Merge algorithmMerge algorithms are a family of algorithms that take multiple sorted lists as input and produce a single list as output, containing all the elements of the inputs lists in sorted order. These algorithms are used as subroutines in various sorting algorithms, most famously merge sort. The merge algorithm plays a critical role in the merge sort algorithm, a comparison-based sorting algorithm.
Collaborative filteringCollaborative filtering (CF) is a technique used by recommender systems. Collaborative filtering has two senses, a narrow one and a more general one. In the newer, narrower sense, collaborative filtering is a method of making automatic predictions (filtering) about the interests of a user by collecting preferences or taste information from many users (collaborating). The underlying assumption of the collaborative filtering approach is that if a person A has the same opinion as a person B on an issue, A is more likely to have B's opinion on a different issue than that of a randomly chosen person.
Predicate functor logicIn mathematical logic, predicate functor logic (PFL) is one of several ways to express first-order logic (also known as predicate logic) by purely algebraic means, i.e., without quantified variables. PFL employs a small number of algebraic devices called predicate functors (or predicate modifiers) that operate on terms to yield terms. PFL is mostly the invention of the logician and philosopher Willard Quine. The source for this section, as well as for much of this entry, is Quine (1976).
Natural deductionIn logic and proof theory, natural deduction is a kind of proof calculus in which logical reasoning is expressed by inference rules closely related to the "natural" way of reasoning. This contrasts with Hilbert-style systems, which instead use axioms as much as possible to express the logical laws of deductive reasoning. Natural deduction grew out of a context of dissatisfaction with the axiomatizations of deductive reasoning common to the systems of Hilbert, Frege, and Russell (see, e.g., Hilbert system).