Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Blends of commercial epoxy monomer with a 4,4'-diaminodiphenylsulfone hardener and poly(epsilon-caprolactone) (PCL) were evaluated for their potential as a self-healing matrix for fiber-reinforced composites, based on their room temperature toughness and stiffness and their capacity for healing when subjected to a moderate heating cycle. Analysis of the microstructure and thermal properties of the blends indicated three types of morphology to result from polymerization-induced phase separation during cure, depending on the PCL content, including an interconnected particulate epoxy phase and a co-continuous PCL phase above 23 vol% PCL. While the mechanical performance diminished with increasing PCL content, toughness recovery after healing at 150 degrees C for 30 min strongly increased. Blends with 25 vol% PCL showed a healing efficiency in excess of 70%, while retaining suitable room-temperature mechanical properties (a tensile modulus of 1.5 GPa and a tensile strength of about 20 MPa), and were concluded to be promising candidates for self-healing composites. (C) 2016 Elsevier Ltd. All rights reserved.
François Maréchal, Véronique Michaud, Yves Leterrier, Harm-Anton Klok, Jeremy Luterbacher, Maxime Alexandre Clément Hedou, Adrien Julien Demongeot, Graham Reid Dick, Christèle Rayroud, Thibault Rambert
Thomas Keller, Hongwei Zhu, Ting Li, Jiahui Shen
Mário Alexandre De Jesus Garrido, Mateus De Assunção Hofmann