A decision model to predict the risk of the first fall onset
Related publications (35)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Supervised machine learning models are receiving increasing attention in electricity theft detection due to their high detection accuracy. However, their performance depends on a massive amount of labeled training data, which comes from time-consuming and ...
Piscataway2024
, ,
As distribution shifts are inescapable in realistic clinical scenarios due to inconsistencies in imaging protocols, scanner vendors, and across different centers, well-trained deep models incur a domain generalization problem in unseen environments. Despit ...
Rationale: Given the expanding number of COVID-19 cases and the potential for new waves of infection, there is an urgent need for early prediction of the severity of the disease in intensive care unit (ICU) patients to optimize treatment strategies.Objecti ...
Background Coercion in psychiatry is a controversial issue. Identifying its predictors and their interaction using traditional statistical methods is difficult, given the large number of variables involved. The purpose of this study was to use machine-lear ...
Characteristics of the spent nuclear fuel (SNF) are typically calculated, requiring validation a priori. The validation process relies on the difference between calculations and measurements, namely the bias. Usually, predicting the bias based on benchmark ...
Little is known about the biological functions which are exerted by hormone receptors in physiological conditions. Here, we made use of the Mouse INtraDuctal (MIND) model, an innovative patient-derived xenograft (PDX) model, to characterize global gene exp ...
IEEE2020
,
Classifiers that can be implemented on chip with minimal computational and memory resources are essential for edge computing in emerging applications such as medical and IoT devices. This paper introduces a machine learning model based on oblique decision ...
Making decisions is part and parcel of being human. Among a set of actions, we want to choose the one that has the highest reward. But the uncertainty of the outcome prevents us from always making the right decision. Making decisions under uncertainty can ...
EPFL2020
, ,
Algorithms are now routinely used to make consequential decisions that affect human lives. Examples include college admissions, medical interventions or law enforcement. While algorithms empower us to harness all information hidden in vast amounts of data, ...
The use of drones in search and rescue (SAR) missions can be very cognitively demanding. Since high levels of cognitive workload can negatively affect human performance, there is a risk of compromising the mission and leading to failure with catastrophic o ...