Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
While the rheology of non-Brownian suspensions in the dilute regime is well understood, their behavior in the dense limit remains mystifying. As the packing fraction of particles increases, particle motion becomes more collective, leading to a growing length scale and scaling properties in the rheology as the material approaches the jamming transition. There is no accepted microscopic description of this phenomenon. However, in recent years it has been understood that the elasticity of simple amorphous solids is governed by a critical point, the unjamming transition where the pressure vanishes, and where elastic properties display scaling and a diverging length scale. The correspondence between these two transitions is at present unclear. Here we show that for a simple model of dense flow, which we argue captures the essential physics near the jamming threshold, a formal analogy can be made between the rheology of the flow and the elasticity of simple networks. This analogy leads to a new conceptual framework to relate microscopic structure to rheology. It enables us to define and compute numerically normal modes and a density of states. We find striking similarities between the density of states in flow, and that of amorphous solids near unjamming: both display a plateau above some frequency scale ω∼ |z c - z|, where z is the coordination of the network of particle in contact, z c = 2D where D is the spatial dimension. However, a spectacular difference appears: the density of states in flow displays a single mode at another frequency scale ω min ≪ ωgoverning the divergence of the viscosity.
Manon Eugénie Voisin--Leprince
David Lyndon Emsley, Arthur César Pinon, Pinelopi Moutzouri, Manuel Cordova