Publication

Capturing epidermal stemness

Andrea Zaffalon
2016
EPFL thesis
Abstract

Regenerative medicine aims to replace or regenerate tissues or organs to re-establish their normal function. In 1975, Rheinwald and Green developed a technique to isolate and amplify epidermal stem cells. Their discovery led to the development of cultured epidermal autografts (CEA), the first regenerative therapy using cultured cells. Adult stem cells are the working force behind tissue homeostasis and repair. Through constant division and specialization, they produce enough daughter cells to maintain tissue architecture and function. This process is orchestrated by an elegant cross-talk between the stem cells and their microenvironment. By using irradiated feeder cells (3T3-J2 cells), Rheinwald and Green were able to artificially instruct epidermal cells to grow in vitro. Later on, they found that these cells could regenerate a functional epidermis. Moreover, Barrandon and Green demonstrated that clonogenic keratinocytes lose progressively their growth potential in vitro. This process is called clonal conversion. The 3T3-J2 cells are mouse embryonic fibroblasts. The molecules that they produce are necessary to promote self-renewal of keratinocyte stem cells in vitro. If the quality of the culture system is not monitored, clonal conversion can occur rapidly and the therapeutic potential is lost. Although the system is now used in the clinics for the treatment of large burns and cornea injuries, the regulatory affairs express genuine concerns towards the animal origin of the feeder cells. Ultimately, we would like to replace the current 3T3-J2 culture system by a fully characterized system, devoid of animal products, for the production of CEA. In this thesis, we developed two strategies to work towards this goal. First, we developed a large scale RNAi strategy to investigate the cellular cross-talk between feeder cells and human keratinocytes. We have identified several putative “feeder genes”. One of these genes is Furin, a serine protease. Furin is expressed by the 3T3-J2 cells and is required to sustain the proliferation of human keratinocytes. Second, we investigated the impact of ROCK inhibition on the procurement and culture of human keratinocytes. We found that it promoted the adhesion and proliferation of freshly isolated human keratinocytes. In opposition to what was described previously, we did not observe evidences of cellular immortalization or reprogramming when keratinocytes where treated with Y-27632 (ROCK inhibitor). Together, the results of our two approaches provide new leads for the further development of a new culture system for human keratinocyte stem cells.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (39)
Stem cell
In multicellular organisms, stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. They are the earliest type of cell in a cell lineage. They are found in both embryonic and adult organisms, but they have slightly different properties in each. They are usually distinguished from progenitor cells, which cannot divide indefinitely, and precursor or blast cells, which are usually committed to differentiating into one cell type.
Embryonic stem cell
Embryonic stem cells (ESCs) are pluripotent stem cells derived from the inner cell mass of a blastocyst, an early-stage pre-implantation embryo. Human embryos reach the blastocyst stage 4–5 days post fertilization, at which time they consist of 50–150 cells. Isolating the inner cell mass (embryoblast) using immunosurgery results in destruction of the blastocyst, a process which raises ethical issues, including whether or not embryos at the pre-implantation stage have the same moral considerations as embryos in the post-implantation stage of development.
Hematopoietic stem cell
Hematopoietic stem cells (HSCs) are the stem cells that give rise to other blood cells. This process is called haematopoiesis. In vertebrates, the very first definitive HSCs arise from the ventral endothelial wall of the embryonic aorta within the (midgestational) aorta-gonad-mesonephros region, through a process known as endothelial-to-hematopoietic transition. In adults, haematopoiesis occurs in the red bone marrow, in the core of most bones. The red bone marrow is derived from the layer of the embryo called the mesoderm.
Show more
Related publications (130)

Deciphering the nature of cell state transitions in single cells using quantitative modeling of temporal dynamics

Alex Russell Lederer

Cells are the smallest operational units of living systems. Through synthesis of various biomolecules and exchange of signals with the environment, cells tightly regulate their composition to realize a specific functional state. The transformation of a cel ...
EPFL2024

Low temperature and mTOR inhibition favor stem cell maintenance in human keratinocyte cultures

Kai Johnsson, Yann Barrandon, Johannes Alexander Mosig, Thomas Michael Braschler, Ariane Rochat, Jean-Baptiste Bureau, Fahd Azzabi Zouraq, Mako Kamiya

Adult autologous human epidermal stem cells can be extensively expanded ex vivo for cell and gene therapy. Identifying the mechanisms involved in stem cell maintenance and defining culture conditions to maintain stemness is critical, because an inadequate ...
WILEY2023

Bioengineering human mini-intestines with in vivo-like complexity and function

Olga Mitrofanova

Biological research heavily relies on the use of animal models, which has made it difficult to answer specific questions about human biology and disease. However, with the advent of human organoids - miniature versions of tissues generated in 3D human stem ...
EPFL2023
Show more
Related MOOCs (13)
Introduction à l'immunologie (part 1)
Ce cours décrit les mécanismes fondamentaux du système immunitaire pour mieux comprendre les bases immunologiques dela vaccination, de la transplantation, de l’immunothérapie, de l'allergie et des mal
Show more