Uniqueness quantificationIn mathematics and logic, the term "uniqueness" refers to the property of being the one and only object satisfying a certain condition. This sort of quantification is known as uniqueness quantification or unique existential quantification, and is often denoted with the symbols "∃!" or "∃=1". For example, the formal statement may be read as "there is exactly one natural number such that ". The most common technique to prove the unique existence of a certain object is to first prove the existence of the entity with the desired condition, and then to prove that any two such entities (say, and ) must be equal to each other (i.
Bachelor's degreeA bachelor's degree (from Middle Latin baccalaureus) or baccalaureate (from Modern Latin baccalaureatus) is an undergraduate academic degree awarded by colleges and universities upon completion of a course of study lasting three to six years (depending on institution and academic discipline). The two most common bachelor's degrees are the Bachelor of Arts (BA) and the Bachelor of Science (BS or BSc).
Honours degreeHonours degree has various meanings in the context of different degrees and education systems. Most commonly it refers to a variant of the undergraduate bachelor's degree containing a larger volume of material or a higher standard of study, or both, rather than an "ordinary", "general" or "pass" bachelor's degree. Honours degrees are sometimes indicated by "Hons" after the degree abbreviation, with various punctuation according to local custom, e.g. "BA (Hons)", "B.A., Hons", etc.
Lindström quantifierIn mathematical logic, a Lindström quantifier is a generalized polyadic quantifier. Lindström quantifiers generalize first-order quantifiers, such as the existential quantifier, the universal quantifier, and the counting quantifiers. They were introduced by Per Lindström in 1966. They were later studied for their applications in logic in computer science and database query languages. In order to facilitate discussion, some notational conventions need explaining.
Programming paradigmProgramming paradigms are a way to classify programming languages based on their features. Languages can be classified into multiple paradigms. Some paradigms are concerned mainly with implications for the execution model of the language, such as allowing side effects, or whether the sequence of operations is defined by the execution model. Other paradigms are concerned mainly with the way that code is organized, such as grouping a code into units along with the state that is modified by the code.
General recursive functionIn mathematical logic and computer science, a general recursive function, partial recursive function, or μ-recursive function is a partial function from natural numbers to natural numbers that is "computable" in an intuitive sense – as well as in a formal one. If the function is total, it is also called a total recursive function (sometimes shortened to recursive function). In computability theory, it is shown that the μ-recursive functions are precisely the functions that can be computed by Turing machines (this is one of the theorems that supports the Church–Turing thesis).
Law degreeA law degree is an academic degree conferred for studies in law. Such degrees are generally preparation for legal careers. But while their curricula may be reviewed by legal authority, they do not confer a license themselves. A legal license is granted by examination, and exercised locally. The law degree can have local, international, and world-wide aspects, such as in England and Wales, where the Legal Practice Course or passing Solicitors Qualifying Examination (SQE) is required to become a solicitor or the Bar Professional Training Course (BPTC) to become a barrister.
Monad (functional programming)In functional programming, a monad is a structure that combines program fragments (functions) and wraps their return values in a type with additional computation. In addition to defining a wrapping monadic type, monads define two operators: one to wrap a value in the monad type, and another to compose together functions that output values of the monad type (these are known as monadic functions). General-purpose languages use monads to reduce boilerplate code needed for common operations (such as dealing with undefined values or fallible functions, or encapsulating bookkeeping code).
Engineer's degreeAn engineer's degree is an advanced academic degree in engineering which is conferred in Europe, some countries of Latin America, North Africa and a few institutions in the United States. The degree may require a thesis but always requires a non-abstract project. Through the Canadian Engineering Accreditation Board (CEAB), Engineers Canada accredits Canadian undergraduate engineering programs that meet the standards of the profession.
Theory (mathematical logic)In mathematical logic, a theory (also called a formal theory) is a set of sentences in a formal language. In most scenarios a deductive system is first understood from context, after which an element of a deductively closed theory is then called a theorem of the theory. In many deductive systems there is usually a subset that is called "the set of axioms" of the theory , in which case the deductive system is also called an "axiomatic system". By definition, every axiom is automatically a theorem.