Open scienceOpen science is the movement to make scientific research (including publications, data, physical samples, and software) and its dissemination accessible to all levels of society, amateur or professional. Open science is transparent and accessible knowledge that is shared and developed through collaborative networks. It encompasses practices such as publishing open research, campaigning for open access, encouraging scientists to practice open-notebook science (such as openly sharing data and code), broader dissemination and engagement in science and generally making it easier to publish, access and communicate scientific knowledge.
Center for Open ScienceThe Center for Open Science is a non-profit technology organization based in Charlottesville, Virginia with a mission to "increase the openness, integrity, and reproducibility of scientific research." Brian Nosek and Jeffrey Spies founded the organization in January 2013, funded mainly by the Laura and John Arnold Foundation and others. The organization began with work in reproducibility of psychology research, with the large-scale initiative Reproducibility Project: Psychology.
Open researchOpen research is research that is openly accessible by others. Those who publish research in this way are often concerned with making research more transparent, more collaborative, more wide-reaching, and more efficient. Open research aims to make both research methods and the resulting data freely available, often via the internet, in order to support reproducibility and, potentially, massively distributed research collaboration. In this regard, it is related to both open source software and citizen science.
Open scientific dataOpen scientific data or open research data is a type of open data focused on publishing observations and results of scientific activities available for anyone to analyze and reuse. A major purpose of the drive for open data is to allow the verification of scientific claims, by allowing others to look at the reproducibility of results, and to allow data from many sources to be integrated to give new knowledge. The modern concept of scientific data emerged in the second half of the 20th century, with the development of large knowledge infrastructure to compute scientific information and observation.
Principal component analysisPrincipal component analysis (PCA) is a popular technique for analyzing large datasets containing a high number of dimensions/features per observation, increasing the interpretability of data while preserving the maximum amount of information, and enabling the visualization of multidimensional data. Formally, PCA is a statistical technique for reducing the dimensionality of a dataset. This is accomplished by linearly transforming the data into a new coordinate system where (most of) the variation in the data can be described with fewer dimensions than the initial data.
Independent component analysisIn signal processing, independent component analysis (ICA) is a computational method for separating a multivariate signal into additive subcomponents. This is done by assuming that at most one subcomponent is Gaussian and that the subcomponents are statistically independent from each other. ICA is a special case of blind source separation. A common example application is the "cocktail party problem" of listening in on one person's speech in a noisy room.