**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# From Polar to Reed-Muller Codes

Abstract

The year 2016, in which I am writing these words, marks the centenary of Claude Shannon, the father of information theory. In his landmark 1948 paper "A Mathematical Theory of Communication", Shannon established the largest rate at which reliable communication is possible, and he referred to it as the channel capacity. Since then, researchers have focused on the design of practical coding schemes that could approach such a limit. The road to channel capacity has been almost 70 years long and, after many ideas, occasional detours, and some rediscoveries, it has culminated in the description of low-complexity and provably capacity-achieving coding schemes, namely, polar codes and iterative codes based on sparse graphs. However, next-generation communication systems require an unprecedented performance improvement and the number of transmission settings relevant in applications is rapidly increasing. Hence, although Shannon's limit seems finally close at hand, new challenges are just around the corner. In this thesis, we trace a road that goes from polar to Reed-Muller codes and, by doing so, we investigate three main topics: unified scaling, non-standard channels, and capacity via symmetry. First, we consider unified scaling. A coding scheme is capacity-achieving when, for any rate smaller than capacity, the error probability tends to 0 as the block length becomes increasingly larger. However, the practitioner is often interested in more specific questions such as, "How much do we need to increase the block length in order to halve the gap between rate and capacity?". We focus our analysis on polar codes and develop a unified framework to rigorously analyze the scaling of the main parameters, i.e., block length, rate, error probability, and channel quality. Furthermore, in light of the recent success of a list decoding algorithm for polar codes, we provide scaling results on the performance of list decoders. Next, we deal with non-standard channels. When we say that a coding scheme achieves capacity, we typically consider binary memoryless symmetric channels. However, practical transmission scenarios often involve more complicated settings. For example, the downlink of a cellular system is modeled as a broadcast channel, and the communication on fiber links is inherently asymmetric. We propose provably optimal low-complexity solutions for these settings. In particular, we present a polar coding scheme that achieves the best known rate region for the broadcast channel, and we describe three paradigms to achieve the capacity of asymmetric channels. To do so, we develop general coding "primitives", such as the chaining construction that has already proved to be useful in a variety of communication problems. Finally, we show how to achieve capacity via symmetry. In the early days of coding theory, a popular paradigm consisted in exploiting the structure of algebraic codes to devise practical decoding algorithms. However, proving the optimality of such coding schemes remained an elusive goal. In particular, the conjecture that Reed-Muller codes achieve capacity dates back to the 1960s. We solve this open problem by showing that Reed-Muller codes and, in general, codes with sufficient symmetry are capacity-achieving over erasure channels under optimal MAP decoding. As the proof does not rely on the precise structure of the codes, we are able to show that symmetry alone guarantees optimal performance.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related concepts (32)

Related publications (64)

Binary erasure channel

In coding theory and information theory, a binary erasure channel (BEC) is a communications channel model. A transmitter sends a bit (a zero or a one), and the receiver either receives the bit corre

Polar code (coding theory)

In information theory, a polar code is a linear block error-correcting code. The code construction is based on a multiple recursive concatenation of a short kernel code which transforms the physical

Code

In communications and information processing, code is a system of rules to convert information—such as a letter, word, sound, image, or gesture—into another form, sometimes shortened or secret, for c

Loading

Loading

Loading

The general subject considered in this thesis is a recently discovered coding technique, polar coding, which is used to construct a class of error correction codes with unique properties. In his ground-breaking work, Arikan proved that this class of codes, called polar codes, achieve the symmetric capacity --- the mutual information evaluated at the uniform input distribution ---of any stationary binary discrete memoryless channel with low complexity encoders and decoders requiring in the order of $O(N\log N)$ operations in the block-length $N$. This discovery settled the long standing open problem left by Shannon of finding low complexity codes achieving the channel capacity. Polar codes are not only appealing for being the first to 'close the deal'. In contrast to most of the existing coding schemes, polar codes admit an explicit low complexity construction. In addition, for symmetric channels, the polar code construction is deterministic; the theoretically beautiful but practically limited "average performance of an ensemble of codes is good, so there must exist one particular code in the ensemble at least as good as the average'' formalism of information theory is bypassed. Simulations are thus not necessary in principle for evaluating the error probability which is shown in a study by Telatar and Arikan to scale exponentially in the square root of the block-length. As such, at the time of this writing, polar codes are appealing for being the only class of codes proved, and proved with mathematical elegance, to possess all of these properties. Polar coding settled an open problem in information theory, yet opened plenty of challenging problems that need to be addressed. This novel coding scheme is a promising method from which, in addition to data transmission, problems such as data compression or compressed sensing, which includes all types of measurement processes like the MRI or ultrasound, could benefit in terms of efficiency. To make this technique fulfill its promise, the original theory has been, and should still be, extended in multiple directions. A significant part of this thesis is dedicated to advancing the knowledge about this technique in two directions. The first one provides a better understanding of polar coding by generalizing some of the existing results and discussing their implications, and the second one studies the robustness of the theory over communication models introducing various forms of uncertainty or variations into the probabilistic model of the channel. See the fulltext of the thesis for the complete abstract.

Shannon, in his landmark 1948 paper, developed a framework for characterizing the fundamental limits of information transmission. Among other results, he showed that reliable communication over a channel is possible at any rate below its capacity. In 2008, Arikan discovered polar codes; the only class of explicitly constructed low-complexity codes that achieve the capacity of any binary-input memoryless symmetric-output channel. Arikan's polar transform turns independent copies of a noisy channel into a collection of synthetic almost-noiseless and almost-useless channels. Polar codes are realized by sending data bits over the almost-noiseless channels and recovering them by using a low-complexity successive-cancellation (SC) decoder, at the receiver. In the first part of this thesis, we study polar codes for communications. When the underlying channel is an erasure channel, we show that almost all correlation coefficients between the erasure events of the synthetic channels decay rapidly. Hence, the sum of the erasure probabilities of the information-carrying channels is a tight estimate of the block-error probability of polar codes when used for communication over the erasure channel. We study SC list (SCL) decoding, a method for boosting the performance of short polar codes. We prove that the method has a numerically stable formulation in log-likelihood ratios. In hardware, this formulation increases the decoding throughput by 53% and reduces the decoder's size about 33%. We present empirical results on the trade-off between the length of the CRC and the performance gains in a CRC-aided version of the list decoder. We also make numerical comparisons of the performance of long polar codes under SC decoding with that of short polar codes under SCL decoding. Shannon's framework also quantifies the secrecy of communications. Wyner, in 1975, proposed a model for communications in the presence of an eavesdropper. It was shown that, at rates below the secrecy capacity, there exist reliable communication schemes in which the amount of information leaked to the eavesdropper decays exponentially in the block-length of the code. In the second part of this thesis, we study the rate of this decay. We derive the exact exponential decay rate of the ensemble-average of the information leaked to the eavesdropper in Wyner's model when a randomly constructed code is used for secure communications. For codes sampled from the ensemble of i.i.d. random codes, we show that the previously known lower bound to the exponent is exact. Our ensemble-optimal exponent for random constant-composition codes improves the lower bound extant in the literature. Finally, we show that random linear codes have the same secrecy power as i.i.d. random codes. The key to securing messages against an eavesdropper is to exploit the randomness of her communication channel so that the statistics of her observation resembles that of a pure noise process for any sent message. We study the effect of feedback on this approximation and show that it does not reduce the minimum entropy rate required to approximate a given process. However, we give examples where variable-length schemes achieve much larger exponents in this approximation in the presence of feedback than the exponents in systems without feedback. Upper-bounding the best exponent that block codes attain, we conclude that variable-length coding is necessary for achieving the improved exponents.

Shannon in his seminal work \cite{paper:shannon} formalized the framework on the problem of digital communication of information and storage. He quantified the fundamental limits of compression and transmission rates. The quantity \textit{channel capacity} was coined to give an operational meaning on the ultimate limit of information transfer between two entities, transmitter and receiver. By using a random coding argument, he showed the achievability of reliable communication on any noisy channel as long as the rate is less than the channel capacity. More precisely, he argued that, using a fixed composition random codebook at the sender and a maximum likelihood decoder in the receiver, one can achieve almost zero error communication of information. Shannon's result was a promise on the achievability on the amount of data one can transfer over a medium. Achieving those promises has spurred scientific interest since 1948. Significant effort has been spent to find practical codes which gets close to the Shannon limits. For some class of channels, codes which are capacity achieving has been found since then. Low Density Parity Check Codes (LDPC) is one such capacity achieving family of codes for the class of binary erasure channels. Recently, Arikan proposed a family of codes known as Polar codes which are found to be capacity achieving for binary input memoryless channels. Slowly but steadily the longstanding problem of achieving Shannon limit is thus getting settled. In order to realize a practical system which can achieve the Shannon limits, two important things are necessary. One of them is an efficient capacity achieving code sequence and the other is an implementable decoding rule. Both these require the knowledge of the probabilistic law of the channel through which communication take place. At the transmitter one needs to know the channel capacity whereas at the receiver a perfect knowledge of the channel is necessitated to build optimum decoder. The question of whether a decoder can be designed without knowing the underlying channel, yet we can do a reliable communication arises here. This is the subject of discussion in this report. Consider a situation where a communication system is to be designed without explicit knowledge about the channel. Here, neither the transmitter nor the receiver knows the exact channel law. Suppose, the possible list of channels is made available upfront to both entities (transmitter and receiver). Can we devise a reliable communication scheme, irrespective of the actual channel picked without both transmitter and receiver being aware of it. This is the central theme in what is known\footnote{Also referred as \textit{coding for class of channels} as discussed in \cite{paper:blackwell}, \cite{book:Wolfowitz}.} as \textit{coding for compound channels}\cite{book:Csiszar}. Designing a reliable communication system for compound channels essentially involve building a codebook at the transmitter and a decoding rule at the receiver. The encoder-decoder pair together must guarantee reliable communication over a set of channels. In the general setting, no feedback is assumed from the receiver to the transmitter. Thus, a single coding strategy (codebook) must be devised (and fixed) upfront prior to transmission. At the receiver end, the decoding strategy must be devised independent of any knowledge of the channel. Of course, the codebook devised at the sender is perfectly known to the receiver. The answer to the question on whether such a communication system can be build is on the affirmative. In order to talk about the existence of reliable communication strategies, one must first talk about the maximum possible rate, the capacity. The highest achievable rate in a compound setting is known as the \textit{compound capacity} or capacity of the family. This is analogous to the famous Shannon capacity being the ultimate limit on achievable rate for any single channel. The capacity of compound set of memoryless channels has been studied by Blackwell et al in \cite{paper:blackwell} and that of linear dispersive channels is investigated by Root and Varaiya in \cite{paper:root:varaiya}. Lapidoth and Telatar looked at the compound capacity for families of channels with memory, more specifically the finite state channels \cite{paper:lapidoth-telatar1998}. As a special case, they have also derived the compound channel capacity of a class of Gilbert-Elliot channels. A decoder which operates without the knowledge of the channel in this setup is called a universal decoder. It is known that Maximum Mutual Information (MMI) decoders proposed by Goppa are universal. MMI decoders compute the empirical mutual between a received codeword against the codebook and find the best matching word as the true estimate. The complexity of MMI decoder remain fixed even if we were to find structured codes. This motivate us to ask the question whether we can build a universal decoder which offer better structure. Decoding rules which brings additive nature were considered in the literature as a potential scheme. Our work in this has been driven by this line of thoughts. In this work, we focus on class of discrete memoryless channels (DMC) and more specifically binary memoryless channels. We show that it is possible to build a linear universal decoder for any compound binary memoryless channels. The recent introduction of Polar codes motivated us to look into their suitability to the compound channel setup. We have carried out a preliminary investigation in this direction. While it is not clear whether Polar codes are universal under the optimum universal decoding, we find that they are universal for certain restricted classes of compound BMC sets.

2009