Controlling the nonlinear optical properties of plasmonic nanoparticles with the phase of their linear response
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Publications related to Controlling the nonlinear optical properties of plasmonic nanoparticles with the phase of their linear response | EPFL Graph Search
Plasmonic photochemistry has a large potential to replace energy-intensive chemical processes with low-temperature, low-pressure light-driven chemical reactions. Plasmonic nanostructures have emerged as promising photocatalysts with exceptional and tunable ...
The optical domain presents potential avenues for enhancing both computing and communication due to its inherentproperties of bandwidth, parallelism, and energy efficiency. This research focuses on harnessing 3-Dimensional (3D)diffractive optics for novel ...
Nonlinear optical frequency conversion is one of the driving research areas in photonics. Its quasi instantaneous response and the promise of low power consumption in integrated structures could cover the demand for fast signal processing with minimal ener ...
Diode effects are of great interest for both fundamental physics and modern technologies. Electrical diode effects (nonreciprocal transport) have been observed in Weyl systems. Optical diode effects arising from the Weyl fermions have been theoretically co ...
Cancer is among the leading causes of death worldwide, and as knowledge of the disease continues to grow there is an increasing interest towards precision medicine: more specifically towards the theranostics field, i.e the development of targeted molecular ...
Since the discovery of dissipative Kerr solitons in optical microresonators, significant progress has been made in the understanding of the underlying physical principles from the fundamental side and generation of broadband coherent optical Kerr frequency ...
This dataset accompanies the publication "Quantum-mechanical effects in photoluminescence from thin crystalline gold films" published in Light: Science & Applications (https://doi.org/10.1038/s41377-024-01408-2). The data can be used to reproduce plots 1-4 ...
Quantum optics studies how photons interact with other forms of matter, the understanding of which was crucial for the development of quantum mechanics as a whole. Starting from the photoelectric effect, the quantum property of light has led to the develop ...
Photonics integrated circuits are a promising solution for the growing demands of data transmission and future system-on-chip technologies. Within this context, nonlinear optical interactions offer unique opportunities for all-optical processing, sampling, ...
Electron-cyclotron waves are a tool commonly used in tokamaks, in particular to drive current. Their ability to drive current in a very localized manner renders them an optimal tool for MHD mode mitigation. However, such applications require high accuracy ...