Apollonius of PergaApollonius of Perga (Ἀπολλώνιος ὁ Περγαῖος ; 240 BC-190 BC) was an ancient Greek geometer and astronomer known for his work on conic sections. Beginning from the earlier contributions of Euclid and Archimedes on the topic, he brought them to the state prior to the invention of analytic geometry. His definitions of the terms ellipse, parabola, and hyperbola are the ones in use today. With his predecessors Euclid and Archimedes, Apollonius is generally considered among the greatest mathematicians of antiquity.
ParabolaIn mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves. One description of a parabola involves a point (the focus) and a line (the directrix). The focus does not lie on the directrix. The parabola is the locus of points in that plane that are equidistant from the directrix and the focus.
Pencil (geometry)In geometry, a pencil is a family of geometric objects with a common property, for example the set of lines that pass through a given point in a plane, or the set of circles that pass through two given points in a plane. Although the definition of a pencil is rather vague, the common characteristic is that the pencil is completely determined by any two of its members. Analogously, a set of geometric objects that are determined by any three of its members is called a bundle.
Point-finite collectionIn mathematics, a collection or family of subsets of a topological space is said to be point-finite if every point of lies in only finitely many members of A metacompact space is a topological space in which every open cover admits a point-finite open refinement. Every locally finite collection of subsets of a topological space is also point-finite. A topological space in which every open cover admits a locally finite open refinement is called a paracompact space. Every paracompact space is therefore metacompact.
Elliptic curveIn mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point O. An elliptic curve is defined over a field K and describes points in K^2, the Cartesian product of K with itself. If the field's characteristic is different from 2 and 3, then the curve can be described as a plane algebraic curve which consists of solutions (x, y) for: for some coefficients a and b in K. The curve is required to be non-singular, which means that the curve has no cusps or self-intersections.
Unit hyperbolaIn geometry, the unit hyperbola is the set of points (x,y) in the Cartesian plane that satisfy the implicit equation In the study of indefinite orthogonal groups, the unit hyperbola forms the basis for an alternative radial length Whereas the unit circle surrounds its center, the unit hyperbola requires the conjugate hyperbola to complement it in the plane. This pair of hyperbolas share the asymptotes y = x and y = −x.
Particular point topologyIn mathematics, the particular point topology (or included point topology) is a topology where a set is open if it contains a particular point of the topological space. Formally, let X be any non-empty set and p ∈ X. The collection of subsets of X is the particular point topology on X. There are a variety of cases that are individually named: If X has two points, the particular point topology on X is the Sierpiński space. If X is finite (with at least 3 points), the topology on X is called the finite particular point topology.
Locally finite collectionA collection of subsets of a topological space is said to be locally finite if each point in the space has a neighbourhood that intersects only finitely many of the sets in the collection. In the mathematical field of topology, local finiteness is a property of collections of subsets of a topological space. It is fundamental in the study of paracompactness and topological dimension. Note that the term locally finite has different meanings in other mathematical fields. A finite collection of subsets of a topological space is locally finite.
Finite topological spaceIn mathematics, a finite topological space is a topological space for which the underlying point set is finite. That is, it is a topological space which has only finitely many elements. Finite topological spaces are often used to provide examples of interesting phenomena or counterexamples to plausible sounding conjectures. William Thurston has called the study of finite topologies in this sense "an oddball topic that can lend good insight to a variety of questions". Let be a finite set.
Income statementAn income statement or profit and loss account (also referred to as a profit and loss statement (P&L), statement of profit or loss, revenue statement, statement of financial performance, earnings statement, statement of earnings, operating statement, or statement of operations) is one of the financial statements of a company and shows the company's revenues and expenses during a particular period. It indicates how the revenues (also known as the “top line”) are transformed into the net income or net profit (the result after all revenues and expenses have been accounted for).