Physics-based constitutive modelling for crystal plasticity finite element computation of cyclic plasticity in fatigue
Related publications (137)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The activation of prismatic slip in Mg and its alloys can be beneficial for deformation and forming. Experiments show that addition of Zn and Al solutes have a softening effect at/below room temperature, attributed to solutes facilitating basal-prism-basal ...
Metal plasticity is an inherently multiscale phenomenon due to the complex long-range field of atomistic dislocations that are the primary mechanism for plastic deformation in metals. Atomistic/Continuum (A/C) coupling methods are computationally efficient ...
The project aims to validate some recent theoretical developments on the deformation twinning nucleation mechanism in HCP metals through small-scale mechanic experiments. To this end, a systematic investigation of the mechanical response of pure magnesium ...
EPFL2022
, , ,
Martensitic crystallography plays a vital role in the texture evolution and mechanical properties in Nickel-Titanium (NiTi) shape memory alloys when subjected to deformation. However, their microstructural changes during deformation are not well known and ...
Fatigue damage in materials results in localized strain at the microstructural level. In many engineering components of the cooling circuits of nuclear power plants, where austenitic steels are used, the material experiences multiaxial cyclic loading, eith ...
Tuning the mechanical properties of metals, including strength, through adjusting the type and/or concentration of added solute elements, has been recognized as an effective way to design and produce materials with desired or optimized mechanical propertie ...
EPFL2022
Twinning in fcc High Entropy Alloys (HEAs) has been implicated as a possible mechanism for hardening that enables enhanced ductility. Here, a theory for the twinning stress is developed analogous to recent theories for yield stress. Specifically, the stres ...
We present a systematic investigation of {10 (1) over bar2} extension twinning mechanism in single crystal magnesium micropillars deformed over seven orders of magnitude of strain rate, from 10(-4) to 500 s(-1), revealing how the accommodation of newly for ...
Model-free data-driven computational mechanics (DDCM) is a new paradigm for simulations in solid mechanics. The modeling step associated to the definition of a material constitutive law is circumvented through the introduction of an abstract phase space in ...