**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Mobility law of dislocations with several character angles and temperatures in FCC Aluminum

Abstract

We study the mobility law of dislocations in aluminum as an important building block for the development of a multiscale method that couples an atomistic model with discrete dislocation dynamics in 3d (\eg CADD3d). Straight dislocations of arbitrary character angles are modeled with classical molecular dynamics at several temperatures. The obtained mobility results are analyzed and validated by comparisons to theoretical models. A critical velocity parameter identified by the analytic models is correlated to the material dispersive nature. We revisit the interpretation of this constant by considering character angles that were not studied previously. Finally, the obtained mobility law is implemented and employed in the discrete dislocation dynamics simulation of a dislocation loop. Our results highlight the importance of including several angles when constructing the mobility law to produce consistent results.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (32)

Related publications (33)

Related MOOCs (2)

Dislocation

In materials science, a dislocation or Taylor's dislocation is a linear crystallographic defect or irregularity within a crystal structure that contains an abrupt change in the arrangement of atoms. The movement of dislocations allow atoms to slide over each other at low stress levels and is known as glide or slip. The crystalline order is restored on either side of a glide dislocation but the atoms on one side have moved by one position. The crystalline order is not fully restored with a partial dislocation.

Molecular dynamics

Molecular dynamics (MD) is a computer simulation method for analyzing the physical movements of atoms and molecules. The atoms and molecules are allowed to interact for a fixed period of time, giving a view of the dynamic "evolution" of the system. In the most common version, the trajectories of atoms and molecules are determined by numerically solving Newton's equations of motion for a system of interacting particles, where forces between the particles and their potential energies are often calculated using interatomic potentials or molecular mechanical force fields.

Angle

In Euclidean geometry, an angle is the figure formed by two rays, called the sides of the angle, sharing a common endpoint, called the vertex of the angle. Angles formed by two rays are also known as plane angles as they lie in the plane that contains the rays. Angles are also formed by the intersection of two planes; these are called dihedral angles. Two intersecting curves may also define an angle, which is the angle of the rays lying tangent to the respective curves at their point of intersection.

Trigonometric Functions, Logarithms and Exponentials

Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm

Trigonometric Functions, Logarithms and Exponentials

Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm

Tuning the mechanical properties of metals, including strength, through adjusting the type and/or concentration of added solute elements, has been recognized as an effective way to design and produce materials with desired or optimized mechanical propertie ...

Strengthening by needle-shaped precipitates is critical in Al–Mg–Si alloys. Here, the strengthening is studied computationally at the peak-aged condition where precipitate shearing and Orowan looping are usually considered to have equal strengths. Pseudo-r ...

2021Roland Logé, Mathijs Pieter van der Meer

In this article, the Joule effect heating influence on recrystallization phenomena in the Inconel 718 nickel-based superalloy is investigated in details. On the one hand, static recrystallization kinetic studies at 1020 degrees C after cold deformation up ...