Publication

Redundant Hash Addressing for Large-Scale Query by Example Spoken Query Detection

Hervé Bourlard, Afsaneh Asaei, Dhananjay Ram
2016
Report or working paper
Abstract

State of the art query by example spoken term detection (QbE-STD) systems rely on representation of speech in terms of sequences of class-conditional posterior probabilities estimated by deep neural network (DNN). The posteriors are often used for pattern matching or dynamic time warping (DTW). Exploiting posterior probabilities as speech representation propounds diverse advantages in a classification system. One key property of the posterior representations is that they admit a highly effective hashing strategy that enables indexing the large archive in divisions for reducing the search complexity. Moreover, posterior indexing leads to a compressed representation and enables pronunciation dewarping and partial detection with no need for DTW. We exploit these characteristics of the posterior space in the context of redundant hash addressing for query-by-example spoken term detection (QbE-STD). We evaluate the QbE-STD system on AMI corpus and demonstrate that tremendous speedup and superior accuracy is achieved compared to the state-of-the-art pattern matching and DTW solutions. The system has great potential to enable massively large scale query detection.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.