Publication

On Flexibeam for radio interferometry

Abstract

Beamforming in radio astronomy focuses at and around a direction using matched beamforming or a derivative, to both maximise the energy coming from this point and reduce the data rate to the central processor. Such beamformers often result in large side-lobes, with influence from undesired directions. Moreover, there is a fundamental lack of flexibility when, for example, targeting extended regions or tracking objects with uncertainty as to their location. We show how the analytic framework Flexibeam can be leveraged to achieve beamshapes that cover general spatial areas with substantially more energy concentration within the region-of-interest. The method is numerically stable, and scalable in the number of antennas, and does not magnify noise.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.