Technical and experimental features of Magnetic Resonance Spectroscopy of brain glycogen metabolism
Related publications (49)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The concentration and metabolism of the primary carbohydrate store in the brain, glycogen, is unknown in the conscious human brain. This study reports the first direct detection and measurement of glycogen metabolism in the human brain, which was achieved ...
Despite obvious improvements in spectral resolution at high magnetic field, the detection of C-13 labeling by H-1-[C-13] NMR spectroscopy remains hampered by spectral overlap, such as in the spectral region of H-1 resonances bound to C3 of glutamate (Glu) ...
The brain contains a small but significant amount of glycogen, which has long been considered to play an insignificant role in the brain. In this study, brain glycogen metabolism was measured using (13)C NMR spectroscopy at 9.4 T. Brain glycogen metabolism ...
With the use of localized 13C MRS in conjunction with [1-(13)C]-D-glucose infusion, it is possible to study brain glycogen metabolism in vivo. The purpose of this study was to validate in vivo 13C MRS measurements by comparing them with results from a stan ...
The adult brain relies on glucose for its energy needs and stores it in the form of glycogen, primarily in astrocytes. Animal and culture studies indicate that brain glycogen may support neuronal function when the glucose supply from the blood is inadequat ...
Localized (13)C NMR spectroscopy provides a new investigative tool for studying cerebral metabolism. The application of (13)C NMR spectroscopy to living intact humans and animals presents the investigator with a number of unique challenges. This review pro ...
Localized 13C nuclear magnetic resonance (NMR) spectroscopy provides a unique window for studying cerebral carbohydrate metabolism through, e.g. the completely non-invasive measurement of cerebral glucose and glycogen metabolism. In addition, label incorpo ...
Proton spectroscopy allows the simultaneous quantification of a high number of metabolite concentrations termed the neurochemical profile. The spin echo full intensity acquired localization (SPECIAL) scheme with an echo time of 2.7 ms was used at 9.4T for ...
The only currently available method to measure brain glycogen in vivo is C-13 NMR spectroscopy. Incorporation of C-13-labeled glucose (Glc) is necessary to allow glycogen measurement, but might be affected by turnover changes. Our aim was to measure glycog ...