Stationary processIn mathematics and statistics, a stationary process (or a strict/strictly stationary process or strong/strongly stationary process) is a stochastic process whose unconditional joint probability distribution does not change when shifted in time. Consequently, parameters such as mean and variance also do not change over time. If you draw a line through the middle of a stationary process then it should be flat; it may have 'seasonal' cycles around the trend line, but overall it does not trend up nor down.
Data scienceData science is an interdisciplinary academic field that uses statistics, scientific computing, scientific methods, processes, algorithms and systems to extract or extrapolate knowledge and insights from noisy, structured, and unstructured data. Data science also integrates domain knowledge from the underlying application domain (e.g., natural sciences, information technology, and medicine). Data science is multifaceted and can be described as a science, a research paradigm, a research method, a discipline, a workflow, and a profession.
Standard additionThe Standard addition method, often used in analytical chemistry, quantifies the analyte present in an unknown. This method is useful for analyzing complex samples where a matrix effect interferes with the analyte signal. In comparison to the calibration curve method, the standard addition method has the advantage of the matrices of the unknown and standards being nearly identical. This minimizes the potential bias arising from the matrix effect when determining the concentration.
Unevenly spaced time seriesIn statistics, signal processing, and econometrics, an unevenly (or unequally or irregularly) spaced time series is a sequence of observation time and value pairs (tn, Xn) in which the spacing of observation times is not constant. Unevenly spaced time series naturally occur in many industrial and scientific domains: natural disasters such as earthquakes, floods, or volcanic eruptions typically occur at irregular time intervals.