Buoyant Turbulent Kinetic Energy Production in Steep-Slope Katabatic Flow
Related publications (34)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This paper establishes a mean-field equation set and an energy theorem to provide a theoretical basis in view of the development of self-consistent, physics-based turbulent transport models for mean-field transport codes. A rigorous averaging procedure ide ...
Gravity currents are buoyancy-driven flows having a significant impact on the environment and human life. They can be observed in a vast range of natural and anthropogenic scenarios, such as seawater and freshwater, the atmosphere, or industrial processes. ...
The applicability of two Reduced-Basis techniques to parametric laminar and turbulent incompressible fluid flow problems in nuclear engineering is studied in this work. The Reduced-Basis methods are used to generate Reduced-Order Models (ROMs) that can acc ...
Steep mountain streams exhibit shallow waters with roughness elements such as stones and pebbles that are comparable in size to flow depth. Owing to the difficulty in measuring fluid velocities at the interface, i.e., from the rough permeable bed to the fr ...
Stably stratified turbulent flows over an unbounded, smooth, planar sloping surface at high Grashof numbers are examined using direct numerical simulations ( DNS). Four sloping angles ( alpha = 15 degrees; 30 degrees; 60 degrees and 90 degrees) and three G ...
Atmospheric boundary-layer (ABL) flows over complex terrain have been the focus of active research, given their impact on weather and climate variability. Surface complexity is understood in a broad sense and includes variation in roughness properties, inc ...
Manning’s empirical formula in conjunction with Strickler’s scaling is widely used to predict the bulk velocity V from the hydraulic radius Rh, the roughness size r and the slope of the energy grade line S in uniform channel and pipe flows at high bulk Rey ...
Accurate modeling of complex terrain, especially steep terrain, in the simulation of wind fields remains a challenge. It is well known that the terrain-following coordinate transformation method (TFCT) generally used in atmospheric flow simulations is rest ...
2016
, ,
Manning's empirical formula in conjunction with Strickler's scaling is widely used to predict the bulk velocity (V) from the hydraulic radius (Rh), the roughness size (r), and the slope of the energy grade line (S) in uniform channel flows at high bulk Rey ...
2023
, , ,
The Nieuwstadt closed-form solution for the stationary Ekman layer is generalized for katabatic flows within the conceptual framework of the Prandtl model. The proposed solution is valid for spatially-varying eddy viscosity and diffusivity (O'Brien type) a ...