Prediction and Comparison of low-Reynolds Airfoil Performance
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The present study deals with the shedding process of the Kármán vortices at the trailing edge of a 2D hydrofoil at high Reynolds numbers. Investigations are performed in order to evaluate the ability of an unsteady numerical simulation to accurately reprod ...
This paper presents a review of the mathematical models which can be adopted to describe the different physical phenomena characterizing the flow around a sailing yacht. The complete model accounting for laminar-turbulent transition regime, free-surface dy ...
Large-eddy simulation (LES) is a very promising technique for the numerical computation of unsteady turbulent flows, and seems to be the perfect tool to simulate the compressible air flow around a high-speed train in a tunnel, providing unsteady results fo ...
The application of Computational Fluid Dynamics simulations based on the Reynolds Averaged Navier- Stokes (RANS) equations to the design of sailing yachts is becoming more commonplace, particularly for the America's Cup. Drawing on the experience of the Ec ...
The present study deals with the shedding process of the Kármán vortices in the wake of a NACA0009 hydrofoil at high Reynolds number. This research addresses the effects of the foil leading edge roughness on the wake dynamic with a special focus on the vor ...