Scrape-Off Layer physics in limited plasmas in TCV
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In magnetically confined fusion devices, the energy and particle transport is significantly larger than expected from purely collisional processes. This degraded confinement mostly results from small-scale turbulence and prevents from reaching self-sustain ...
The goal of thermonuclear fusion research is to provide power plants, that will be able to produce one gigawatt of electricity. Among the different ways to achieve fusion, the tokamak, based on magnetic confinement, is the most promising one. A gas is heat ...
In the search of a fusion reactor using magnetic confinement of toroidal plasmas, many important plasma performance parameters directly depend on the shape of the plasma cross-section. The unique shaping capability of the TCV tokamak ("Tokamak à Configurat ...
The first experimental evidence of parallel momentum transport generated by the up-down asymmetry of a toroidal plasma is reported. The experiments, conducted in the Tokamak a` Configuration Variable, were motivated by the recent theoretical discovery of i ...
Plasma turbulence in a linear device is explored for the first time with three-dimensional global twofluid simulations, focusing on the plasma parameters of the Large Plasma Device. Three instabilities are present in the simulations: the Kelvin-Helmholtz i ...
Thermonuclear controlled fusion research is a highly active branch of plasma physics. The main goal is the production of energy from the fusion reaction of hydrogen isotope nuclei, the same reaction that powers stars. The most promising present approach ar ...
Recent simulations of JET and ASDEX Upgrade plasmas with EDGE2D and SOLPS, respectively, showed that upstream radial electric field in the scrape-off layer (SOL) is substantially below values expected from simple estimates, based on the effects of the pote ...
Understanding particle transport physics is of great importance for magnetically confined plasma devices and for the development of thermonuclear fusion power for energy production. From the beginnings of fusion research, more than half a century ago, the ...
The Helimak experiment produces a toroidal plasma with a helical magnetic field. A simulation-experiment comparison of turbulence in this device is presented, focusing on parameter regimes in which the turbulence is dominated by interchange modes with k(pa ...
The main objective of the ITER ECRH upper launcher (UL) is to control magnetohydrodynamic activity, in particular neoclassical tearing modes (NTMs), by driving several MW of EC Current near the q = 1, 3/2, 2 flux surfaces, where NTMs are expected to occur. ...