Brain-controlled neuroprosthetic interventions to restore locomotion after contusion spinal cord injury in the rat
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Sensory feedback from the moving limbs contributes to the regulation of animal and human locomotion. However, the question of the specific role of the various modalities is still open. Further, functional loss of leg afferent fibres due to peripheral neuro ...
Spinal cord stimulation (i.e. the electrical stimulation of the dorsal columns of the spinal cord) isincreasingly used for the treatment of intractable pain syndromes due to vascular or neurogenicdisorders. Despite well-established safety and efficacy in p ...
At present, the aetiologies of many neurological and neurodegenerative diseases are unknown. However, emergence of a better understanding of these diseases, at both cellular and molecular levels, opens up the possibility of replacement therapies. The prese ...
Neurotransmitters are the molecules that neurons use to communicate with each other and with the other cell types of the nervous system, such as glial cells and cells of the vasculature. The best characterized actions of neurotransmitters are the alteratio ...
The development of spinal cord or dorsal root ganglia neurons expressing calretinin (CR) was studied in thyroid hormone-deficient rats. Immunocytochemical and morphometric analyses showed that the hypothyroidism induced a significant decrease in the number ...
The present study reports on a patient undergoing invasive monitoring for intractable epilepsy who experienced different vestibular sensations after electrical cortical stimulation of the inferior parietal lobule at the anterior part of the intraparietal s ...
The distribution of vasoactive intestinal peptide (VIP) binding sites in the pigeon brain was examined by in vitro autoradiography on slide-mounted sections. A fully characterized monoiodinated form of VIP, which maintains the biological activity of the na ...
The distribution of vasoactive intestinal peptide (VIP) binding sites in the brain of several vertebrate species was examined by in vitro autoradiography on slide-mounted sections. This study included fish, frog, snake, pigeon, rat, mouse, guinea pig, cat ...
The distribution of vasoactive intestinal peptide binding sites in the rat brain was examined by in vitro autoradiography on slide-mounted sections. A fully characterized monoiodinated form of vasoactive intestinal peptide (M-[125I]VIP) previously shown to ...
A growing number of biologically active peptides is being identified within the central nervous system (CNS). According to currently accepted criteria, several of these peptides, including VIP, can be viewed as neurotransmitters. Recent immunohistochemical ...