Publication

Data-driven Demand Response Modeling and Control of Buildings with Gaussian Processes

Colin Neil Jones, Xuan Truong Nghiem
2017
Conference paper
Abstract

This paper presents an approach to provide demand response services with buildings. Each building receives a normalized signal that tells it to increase or decrease its power demand, and the building is free to implement any suitable strategy to follow the command, most likely by changing some of its setpoints. Due to this freedom, the proposed approach lowers the barrier for any buildings equipped with a reasonably functional building management system to participate in the scheme. The response of the buildings to the control signal is modeled by a Gaussian Process, which can predict the power demand of the buildings and also provide a measure of its confidence in the prediction. A battery is included in the system to compensate for this uncertainty and improve the demand response performance of the system. A model predictive controller is developed to optimally control the buildings and the battery, while ensuring their operational constraints with high probability. Our approach is validated by realistic co-simulations between Matlab and the building energy simulator EnergyPlus.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.