We propose to map the fast iterative shrinkage-thresholding algorithm to a deep neural network (DNN), with a sparsity prior in a concatenation of wavelet bases, in the context of compressive imaging. We exploit the DNN architecture to learn the optimal weight matrix of the corresponding reweighted l1-minimization problem. We later use the learned weight matrix for the image reconstruction process, which is recast as a simple l1-minimization problem. The approach, denoted as learned extended FISTA, shows promising results in terms of image quality, compared to state-of-the-art algorithms, and significantly reduces the reconstruction time required to solve the reweighted l1-minimization problem.
The capabilities of deep learning systems have advanced much faster than our ability to understand them. Whilst the gains from deep neural networks (DNNs) are significant, they are accompanied by a growing risk and gravity of a bad outcome. This is tr ...