Economic discriminationEconomic discrimination is discrimination based on economic factors. These factors can include job availability, wages, the prices and/or availability of goods and services, and the amount of capital investment funding available to minorities for business. This can include discrimination against workers, consumers, and minority-owned businesses. It is not the same as price discrimination, the practice by which monopolists (and to a lesser extent oligopolists and monopolistic competitors) charge different buyers different prices based on their willingness to pay.
Prior probabilityA prior probability distribution of an uncertain quantity, often simply called the prior, is its assumed probability distribution before some evidence is taken into account. For example, the prior could be the probability distribution representing the relative proportions of voters who will vote for a particular politician in a future election. The unknown quantity may be a parameter of the model or a latent variable rather than an observable variable.
Zero-inflated modelIn statistics, a zero-inflated model is a statistical model based on a zero-inflated probability distribution, i.e. a distribution that allows for frequent zero-valued observations. Zero-inflated models are commonly used in the analysis of count data, such as the number of visits a patient makes to the emergency room in one year, or the number of fish caught in one day in one lake. Count data can take values of 0, 1, 2, ... (non-negative integer values).
Beta prime distributionIn probability theory and statistics, the beta prime distribution (also known as inverted beta distribution or beta distribution of the second kind) is an absolutely continuous probability distribution. If has a beta distribution, then the odds has a beta prime distribution. Beta prime distribution is defined for with two parameters α and β, having the probability density function: where B is the Beta function. The cumulative distribution function is where I is the regularized incomplete beta function.
Binomial (polynomial)In algebra, a binomial is a polynomial that is the sum of two terms, each of which is a monomial. It is the simplest kind of a sparse polynomial after the monomials. A binomial is a polynomial which is the sum of two monomials. A binomial in a single indeterminate (also known as a univariate binomial) can be written in the form where a and b are numbers, and m and n are distinct non-negative integers and x is a symbol which is called an indeterminate or, for historical reasons, a variable.
Bayes factorThe Bayes factor is a ratio of two competing statistical models represented by their evidence, and is used to quantify the support for one model over the other. The models in questions can have a common set of parameters, such as a null hypothesis and an alternative, but this is not necessary; for instance, it could also be a non-linear model compared to its linear approximation. The Bayes factor can be thought of as a Bayesian analog to the likelihood-ratio test, although it uses the (integrated) marginal likelihood rather than the maximized likelihood.
Gaussian binomial coefficientIn mathematics, the Gaussian binomial coefficients (also called Gaussian coefficients, Gaussian polynomials, or q-binomial coefficients) are q-analogs of the binomial coefficients. The Gaussian binomial coefficient, written as or , is a polynomial in q with integer coefficients, whose value when q is set to a prime power counts the number of subspaces of dimension k in a vector space of dimension n over , a finite field with q elements; i.e. it is the number of points in the finite Grassmannian .
Occam's razorIn philosophy, Occam's razor (also spelled Ockham's razor or Ocham's razor; novacula Occami) is the problem-solving principle that recommends searching for explanations constructed with the smallest possible set of elements. It is also known as the principle of parsimony or the law of parsimony (lex parsimoniae). Attributed to William of Ockham, a 14th-century English philosopher and theologian, it is frequently cited as Entia non sunt multiplicanda praeter necessitatem, which translates as "Entities must not be multiplied beyond necessity", although Occam never used these exact words.