Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.
Pesticide risk indicators provide simple support in the assessment of environmental and health risks from pesticide use, and can therefore inform policies to foster a sustainable interaction of agriculture with the environment. For their relative simplicity, indicators may be particularly useful under con- ditions of limited data availability and resources, such as in Less Developed Countries (LDCs). However, indicator complexity can vary significantly, in particular between those that rely on an exposure–toxicity ratio (ETR) and those that do not. In addition, pesticide risk indicators are usually developed for Western contexts, which might cause incorrect estimation in LDCs. This study investigated the appropriateness of seven pesticide risk indicators for use in LDCs, with reference to smallholding agriculture in Colombia. Seven farm-level indicators, among which 3 relied on an ETR (POCER, EPRIP, PIRI) and 4 on a non-ETR approach (EIQ, PestScreen, OHRI, Dosemeci et al., 2002), were calculated and then compared by means of the Spearman rank correlation test. Indicators were also compared with respect to key indicator char- acteristics, i.e. user friendliness and ability to represent the system under study. The comparison of the indicators in terms of the total environmental risk suggests that the indicators not relying on an ETR approach cannot be used as a reliable proxy for more complex, i.e. ETR, indicators. ETR indicators, when user-friendly, show a comparative advantage over non-ETR in best combining the need for a relatively simple tool to be used in contexts of limited data availability and resources, and for a reliable estimation of environmental risk. Non-ETR indicators remain useful and accessible tools to discriminate between different pesticides prior to application. Concerning the human health risk, simple algorithms seem more appropriate for assessing human health risk in LDCs. However, further research on health risk indicators and their validation under LDC conditions is needed.