Finitely generated abelian groupIn abstract algebra, an abelian group is called finitely generated if there exist finitely many elements in such that every in can be written in the form for some integers . In this case, we say that the set is a generating set of or that generate . Every finite abelian group is finitely generated. The finitely generated abelian groups can be completely classified. The integers, , are a finitely generated abelian group. The integers modulo , , are a finite (hence finitely generated) abelian group.
Chern classIn mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since become fundamental concepts in many branches of mathematics and physics, such as string theory, Chern–Simons theory, knot theory, Gromov-Witten invariants. Chern classes were introduced by . Chern classes are characteristic classes. They are topological invariants associated with vector bundles on a smooth manifold.
Crystalline cohomologyIn mathematics, crystalline cohomology is a Weil cohomology theory for schemes X over a base field k. Its values Hn(X/W) are modules over the ring W of Witt vectors over k. It was introduced by and developed by . Crystalline cohomology is partly inspired by the p-adic proof in of part of the Weil conjectures and is closely related to the algebraic version of de Rham cohomology that was introduced by Grothendieck (1963).
Homological algebraHomological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precursor to algebraic topology) and abstract algebra (theory of modules and syzygies) at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert. Homological algebra is the study of homological functors and the intricate algebraic structures that they entail; its development was closely intertwined with the emergence of .
Euler classIn mathematics, specifically in algebraic topology, the Euler class is a characteristic class of oriented, real vector bundles. Like other characteristic classes, it measures how "twisted" the vector bundle is. In the case of the tangent bundle of a smooth manifold, it generalizes the classical notion of Euler characteristic. It is named after Leonhard Euler because of this. Throughout this article is an oriented, real vector bundle of rank over a base space . The Euler class is an element of the integral cohomology group constructed as follows.
Obstruction theoryIn mathematics, obstruction theory is a name given to two different mathematical theories, both of which yield cohomological invariants. In the original work of Stiefel and Whitney, characteristic classes were defined as obstructions to the existence of certain fields of linear independent vectors. Obstruction theory turns out to be an application of cohomology theory to the problem of constructing a cross-section of a bundle.
Loop spaceIn topology, a branch of mathematics, the loop space ΩX of a pointed topological space X is the space of (based) loops in X, i.e. continuous pointed maps from the pointed circle S1 to X, equipped with the compact-open topology. Two loops can be multiplied by concatenation. With this operation, the loop space is an A∞-space. That is, the multiplication is homotopy-coherently associative. The set of path components of ΩX, i.e. the set of based-homotopy equivalence classes of based loops in X, is a group, the fundamental group π1(X).
Pointed spaceIn mathematics, a pointed space or based space is a topological space with a distinguished point, the basepoint. The distinguished point is just simply one particular point, picked out from the space, and given a name, such as that remains unchanged during subsequent discussion, and is kept track of during all operations. Maps of pointed spaces (based maps) are continuous maps preserving basepoints, i.e.
Category of abelian groupsIn mathematics, the Ab has the abelian groups as and group homomorphisms as morphisms. This is the prototype of an : indeed, every can be embedded in Ab. The zero object of Ab is the trivial group {0} which consists only of its neutral element. The monomorphisms in Ab are the injective group homomorphisms, the epimorphisms are the surjective group homomorphisms, and the isomorphisms are the bijective group homomorphisms. Ab is a of Grp, the .
Timeline of category theory and related mathematicsThis is a timeline of category theory and related mathematics. Its scope ("related mathematics") is taken as: of abstract algebraic structures including representation theory and universal algebra; Homological algebra; Homotopical algebra; Topology using categories, including algebraic topology, categorical topology, quantum topology, low-dimensional topology; Categorical logic and set theory in the categorical context such as algebraic set theory; Foundations of mathematics building on categories, for instance topos theory; Abstract geometry, including algebraic geometry, categorical noncommutative geometry, etc.