Stream ecosystem metabolism integrates production and respiration of organic matter and plays a fundamental role in the global carbon (C) cycle. Several studies have identified distal and proximal physical controls, for example, land use and transient storage, or the effects of water chemistry, that is, organic matter and nutrient availability, on stream metabolism. In parallel, research on organic matter quality has identified conspicuous gradients of chemical composition, yet mostly without demonstrating any functional implications. 2. We hypothesise that organic matter holds a key position in a more comprehensive causal framework of stream ecosystem metabolism, and that a concurrent study can improve mechanistic understanding. Specifically, we here postulate that dissolved organic matter (DOM) quality, that is, its chemical composition, acts as a control of ecosystem respiration (ER) as much as it is a result of gross primary production (GPP). As such, DOM quality likely forms a central link between land use and stream metabolism, besides known physical controls including transient storage and light availability. 3. To examine these hypotheses, we studied 33 streams in north-eastern Austria, a region with diverse land use ranging from semi-natural, forested areas to agricultural areas and settlements. We analysed DOM composition by absorbance and fluorescence spectroscopy, including modelling excitation–emission matrices with parallel factor analysis. We then opposed these data to GPP and ER estimated by fitting a metabolism model to single-station diurnal oxygen records. 4. Structural equation modelling revealed land use as a control on light conditions, DOM composition and concentration and nutrient concentrations, which together ultimately shaped GPP and ER. In particular, humified, coloured and aromatic DOM of predominantly terrestrial origin was prevalent in coniferous forest catchments and increased stream ER. Agricultural and urban areas enriched streams with phosphorous and nitrogen, which increased ER and GPP. Besides nutrients, GPP seemed to be weakly correlated with light availability and – in contrast to our hypothesis – left only a weak imprint on DOM composition. 5. Land-use change is rated as the most pervasive human influence on natural ecosystems and our results highlight its impact on aquatic GPP and ER in streams. To understand the role of inland waters in the global C cycle will require mechanistic understanding of ecosystem metabolism, which notably includes organic matter quality as a hitherto underappreciated key player.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
Dissolved organic carbon (DOC) is the fraction of organic carbon operationally defined as that which can pass through a filter with a pore size typically between 0.22 and 0.7 micrometers. The fraction remaining on the filter is called particulate organic carbon (POC). Dissolved organic matter (DOM) is a closely related term often used interchangeably with DOC. While DOC refers specifically to the mass of carbon in the dissolved organic material, DOM refers to the total mass of the dissolved organic matter.
Particulate organic matter (POM) is a fraction of total organic matter operationally defined as that which does not pass through a filter pore size that typically ranges in size from 0.053 millimeters (53 μm) to 2 millimeters. Particulate organic carbon (POC) is a closely related term often used interchangeably with POM. POC refers specifically to the mass of carbon in the particulate organic material, while POM refers to the total mass of the particulate organic matter.
Organic matter, organic material, or natural organic matter refers to the large source of carbon-based compounds found within natural and engineered, terrestrial, and aquatic environments. It is matter composed of organic compounds that have come from the feces and remains of organisms such as plants and animals. Organic molecules can also be made by chemical reactions that do not involve life. Basic structures are created from cellulose, tannin, cutin, and lignin, along with other various proteins, lipids, and carbohydrates.
Climate change induced shifts in treeline position, both towards higher altitudes and latitudes induce changes in soil organic matter. Eventually, soil organic matter is transported to alpine and subarctic lakes with yet unknown consequences for dissolved ...
Nature Portfolio2024
, , ,
In this study, MS2 bacteriophage was inactivated by homogeneous and heterogeneous photo-Fenton processes in an alkaline matrix (pH 8) using low concentrations of H2O2 and iron forms (1 mg/L), including Fe(II), Fe(III), and Fe (hydr)oxides. As a reference, ...
Elsevier2024
,
High-mountain ecosystems are experiencing acute effects of climate change, most visibly through glacier recession and the greening of the terrestrial environment. The streams draining these landscapes are affected by these shifts, integrating hydrologic, g ...