Large-Scale Image Segmentation with Convolutional Networks
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Stereo reconstruction is a problem of recovering a 3d structure of a scene from a pair of images of the scene, acquired from different viewpoints. It has been investigated for decades and many successful methods were developed.The main drawback of these ...
One of the main limitations of artificial intelligence today is its inability to adapt to unforeseen circumstances. Machine Learning (ML), due to its data-driven nature, is particularly susceptible to this. ML relies on observations in order to learn impli ...
Structural Health Monitoring (SHM) has greatly benefited from computer vision. Recently, deep learning approaches are widely used to accurately estimate the state of deterioration of infrastructure. In this work, we focus on the problem of bridge surface s ...
In this paper, we study how to extract visual concepts to understand landscape scenicness. Using visual feature representations from a Convolutional Neural Network (CNN), we learn a number of Concept Activation Vectors (CAV) aligned with semantic concepts ...
The World Health Organization (WHO) has stated that effective vector control measures are critical to achieving and sustaining reduction of vector-borne infectious disease incidence. Unmanned aerial vehicles (UAVs), popularly known as drones, can be an imp ...
Most state-of-the-art approaches to road extraction from aerial images rely on a CNN trained to label road pixels as foreground and remainder of the image as background. The CNN is usually trained by minimizing pixel-wise losses, which is less than ideal t ...
In this work, we present a new semantic segmentation model for historical city maps that surpasses the state of the art in terms of flexibility and performance. Research in automatic map processing is largely focused on homogeneous corpora or even individu ...
Despite significant progress toward super resolving more realistic images by deeper convolutional neural networks (CNNs), reconstructing fine and natural textures still remains a challenging problem. Recent works on single image super resolution (SISR) are ...
The extremely high recognition accuracy achieved by modern, convolutional neural network (CNN) based face recognition (FR) systems has contributed significantly to the adoption of such systems in a variety of applications, from mundane activities like unlo ...
Most recent 6D pose estimation frameworks first rely on a deep network to establish correspondences between 3D object keypoints and 2D image locations and then use a variant of a RANSAC-based Perspective-n-Point (PnP) algorithm. This two-stage process, how ...