Modulated scattering technique in the terahertz domain enabled by current actuated vanadium dioxide switches
Related publications (44)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Millimeter-wave (mm-wave) and terahertz (THz) detection has opened a significant research direction in imaging, sensing, spectroscopy, and ultrafast wireless communication.The sensitivity of the phase transition to electromagnetic waves in Vanadium dioxide ...
n-linear impedance characteristics of VO2 offer solutions to highly sensitive radio-frequency (RF), millimeterwave (mm-wave), and terahertz (THz) detectors. We demonstrate high-speed broadband sensibility of miniaturized VO2 switches by utilizing the nonli ...
In Terahertz (THz) science, one of the long-standing challenges has been the formation of spectrally dense, single-cycle pulses with tunable duration and spectrum across the frequency range of 0.1–15 THz (THz gap). This frequency band, lying between the el ...
We report on the experimental observation of extreme laser spectral broadening and a change in optical transmission in gallium phosphite induced by 25 MV/cm terahertz (THz) single-cycle internal field. Such intense THz radiation leads to twofold transient ...
A laser stimulus at terahertz (THz) frequency is expected to offer superior control over magnetization dynamics compared to an optical pulse, where ultrafast demagnetization is mediated by heat deposition. As a THz field cycle occurs on a timescale similar ...
In this paper, a 41 x 42.2 mm2 ultra-wide band (UWB) diversity antenna is designed to operate in the frequency band 5.45- 7.45 GHz with the isolation better than 15dB. To achieve omnidirectional coverage pattern diversity is applied. The proposed design is ...
The European Association on Antennas and Propagation (EurAAP)2018
In terahertz (THz) materials science, imaging by scanning prevails when low power THz sources are used. However, the application of array detectors operating with high power THz sources is increasingly reported. We compare the imaging properties of four di ...
Fundamental constraints imposing power-frequency trade-offs in conventional electronics have stimulated research on alternative technologies for millimeter-wave and sub-millimeter-wave applications. In this work, we use the picosecond threshold firing of n ...
This thesis explores the applications of graphene for terahertz and far infrared optical components and antennas, with particular emphasis on tunable and non-reciprocal devices. Both terahertz technologies and graphene are emerging fields which hold many p ...
Advances in terahertz technology rely on the combination of novel materials and designs. As new devices are demonstrated to address the terahertz gap, the ability to perform high-efficiency beam control will be integral to making terahertz radiation a prac ...