Publication

Selective electrical and optical neuromodulation of the central nervous system with conformable microfabricated implants

Amélie Anne Guex
2017
EPFL thesis
Abstract

Neuroprosthetic systems are designed to interface with the nervous system, for the replacement or restoration of damaged functions in the motor and/or sensory systems. In order to have an efficient communication with the nervous tissue leading to optimized clinical outcomes, achieving neural stimulation with high selectivity is essential. This thesis aims at finding technological routes to enable spatial, structural and cell-type selective surface neuromodulation using electrical and optogenetic stimulation and to validate them in in vivo models. Thin and conformable electrode arrays enable close contact with the target tissue, thereby leading to minimal distances with the target neurons and maximal spatial selectivity. Flexible polymer technologies based on polyimide (PI) are used to design thin (< 10 ÎŒm thick) electrode arrays with small feature size (< 100 ÎŒm), resulting in miniaturized conformable arrays for surface stimulation. PEDOT conducting polymer coatings are used on the miniaturized electrical stimulation sites (100 ÎŒm diameter) to improve their charge injection properties. This implant is used for auditory brainstem stimulation in a rat model, and is shown to generate robust activation of the auditory system. Analysis of the multiunit recordings obtained from the inferior colliculus (IC), an auditory structure of the midbrain, led to the identification of different phases in the responses, with various frequency tuning properties. The stimulation configuration is shown to influence the tonotopic organisation of the frequency-tuned responses. Bipolar stimulation with small interelectrode distances (400 ÎŒm) is shown to generate responses that are more frequency-selective than with larger interelectrode distances (800 ÎŒm). The orientation of the electrode pair and the waveformof stimulation current are also shown to influence the response properties. An updated design of the clinical auditory brainstem implant(ABI) is then proposed, integrating higher electrode density and guidelines for a more tissue-conformal format. The main steps in the road towards improvement of ABI outcomes are then discussed, with proposed changes in the stimulation protocol and electrode array in parallel. Another approach to cell-specific neuromodulation is the implementation of optogenetics. This requires not only genetic engineering of the neurons but also the manufacturing of implantable light-emitting devices. Here, we introduce a fabrication process for the integration of thin (50 ÎŒm) LEDs into a polyimide-based device. A proof-of-concept in vivo study shows that stimulation of the spinal cord of a mouse model generates robust EMG responses in both legs over the course of several weeks. The walking integrity is confirmed, showing the absence of functional damages to the spinal cord. These results show that the presented LED array can provide a way of stimulating key elements of the locomotor neural circuitry, potentially leading to a greater understanding of the role of each neuronal subtypes in the spinal cord. Through the applications of ABI and spinal cord stimulation, this thesis thus highlights the importance and potential use of specifically tailored technologies enabling selective surface stimulation of the nervous system.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (33)
Auditory system
The auditory system is the sensory system for the sense of hearing. It includes both the sensory organs (the ears) and the auditory parts of the sensory system. The outer ear funnels sound vibrations to the eardrum, increasing the sound pressure in the middle frequency range. The middle-ear ossicles further amplify the vibration pressure roughly 20 times. The base of the stapes couples vibrations into the cochlea via the oval window, which vibrates the perilymph liquid (present throughout the inner ear) and causes the round window to bulb out as the oval window bulges in.
Autonomic nervous system
The autonomic nervous system (ANS), formerly referred to as the vegetative nervous system, is a division of the nervous system that supplies internal organs, smooth muscle and glands. The autonomic nervous system is a control system that acts largely unconsciously and regulates bodily functions, such as the heart rate, its force of contraction, digestion, respiratory rate, pupillary response, urination, and sexual arousal. This system is the primary mechanism in control of the fight-or-flight response.
Neurostimulation
Neurostimulation is the purposeful modulation of the nervous system's activity using invasive (e.g. microelectrodes) or non-invasive means (e.g. transcranial magnetic stimulation or transcranial electric stimulation, tES, such as tDCS or transcranial alternating current stimulation, tACS). Neurostimulation usually refers to the electromagnetic approaches to neuromodulation.
Show more
Related publications (204)

Unraveling behavior and cortical signals to guide the development of soft neuroprostheses for auditory restoration and spreading depolarization

Emilie Cornelia Maria Revol

Neuroprostheses have been used clinically for decades, to help restore or preserve brain functions, when pharmaceutical treatments are inefficient. Although great progress in the field has been made over the years to interface with the nervous system, surf ...
EPFL2024

Biophysically accurate and machine learning-based surrogate models to optimize neuroprosthesis design and operation

Simone Romeni

Electrical stimulation of the nervous system has emerged as a promising assistive technology in case of many injuries and illnesses across various parts of the nervous system. In particular, the invasive neuromodulation of the peripheral nervous system see ...
EPFL2024

Organ Neuroprosthetics: Connecting Transplanted and Artificial Organs with the Nervous System

Silvestro Micera

Implantable neural interfaces with the central and peripheral nervous systems are currently used to restore sensory, motor, and cognitive functions in disabled people with very promising results. They have also been used to modulate autonomic activities to ...
Wiley2024
Show more
Related MOOCs (27)
Neuroscience Reconstructed: Cell Biology
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Neuroscience Reconstructed: Cell Biology
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Neuroscience Reconstructed: Genetics and Brain Development
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Show more