Model organismA model organism (often shortened to model) is a non-human species that is extensively studied to understand particular biological phenomena, with the expectation that discoveries made in the model organism will provide insight into the workings of other organisms. Model organisms are widely used to research human disease when human experimentation would be unfeasible or unethical. This strategy is made possible by the common descent of all living organisms, and the conservation of metabolic and developmental pathways and genetic material over the course of evolution.
Complex networkIn the context of network theory, a complex network is a graph (network) with non-trivial topological features—features that do not occur in simple networks such as lattices or random graphs but often occur in networks representing real systems. The study of complex networks is a young and active area of scientific research (since 2000) inspired largely by empirical findings of real-world networks such as computer networks, biological networks, technological networks, brain networks, climate networks and social networks.
Metabolic networkA metabolic network is the complete set of metabolic and physical processes that determine the physiological and biochemical properties of a cell. As such, these networks comprise the chemical reactions of metabolism, the metabolic pathways, as well as the regulatory interactions that guide these reactions. With the sequencing of complete genomes, it is now possible to reconstruct the network of biochemical reactions in many organisms, from bacteria to human.
Metabolic pathwayIn biochemistry, a metabolic pathway is a linked series of chemical reactions occurring within a cell. The reactants, products, and intermediates of an enzymatic reaction are known as metabolites, which are modified by a sequence of chemical reactions catalyzed by enzymes. In most cases of a metabolic pathway, the product of one enzyme acts as the substrate for the next. However, side products are considered waste and removed from the cell. These enzymes often require dietary minerals, vitamins, and other cofactors to function.
Cycle spaceIn graph theory, a branch of mathematics, the (binary) cycle space of an undirected graph is the set of its even-degree subgraphs. This set of subgraphs can be described algebraically as a vector space over the two-element finite field. The dimension of this space is the circuit rank of the graph. The same space can also be described in terms from algebraic topology as the first homology group of the graph. Using homology theory, the binary cycle space may be generalized to cycle spaces over arbitrary rings.
InteractomeIn molecular biology, an interactome is the whole set of molecular interactions in a particular cell. The term specifically refers to physical interactions among molecules (such as those among proteins, also known as protein–protein interactions, PPIs; or between small molecules and proteins) but can also describe sets of indirect interactions among genes (genetic interactions). The word "interactome" was originally coined in 1999 by a group of French scientists headed by Bernard Jacq.
Genetically modified organismA genetically modified organism (GMO) is any organism whose genetic material has been altered using genetic engineering techniques. The exact definition of a genetically modified organism and what constitutes genetic engineering varies, with the most common being an organism altered in a way that "does not occur naturally by mating and/or natural recombination". A wide variety of organisms have been genetically modified (GM), from animals to plants and microorganisms.
Finding DoryFinding Dory is a 2016 American computer-animated comedy-drama adventure film produced by Pixar Animation Studios and released by Walt Disney Pictures. Directed by Andrew Stanton, produced by Lindsey Collins and written by Stanton and Victoria Strouse, the film is the sequel to Finding Nemo (2003). Ellen DeGeneres and Albert Brooks reprise their roles from the first film, with Hayden Rolence (replacing Alexander Gould), Ed O'Neill, Kaitlin Olson, Ty Burrell, Diane Keaton and Eugene Levy joining the cast.
Dual-phase evolutionDual phase evolution (DPE) is a process that drives self-organization within complex adaptive systems. It arises in response to phase changes within the network of connections formed by a system's components. DPE occurs in a wide range of physical, biological and social systems. Its applications to technology include methods for manufacturing novel materials and algorithms to solve complex problems in computation. Dual phase evolution (DPE) is a process that promotes the emergence of large-scale order in complex systems.
Node (computer science)A node is a basic unit of a data structure, such as a linked list or tree data structure. Nodes contain data and also may link to other nodes. Links between nodes are often implemented by pointers. Nodes are often arranged into tree structures. A node represents the information contained in a single data structure. These nodes may contain a value or condition, or possibly serve as another independent data structure. Nodes are represented by a single parent node.