Towards Weakly Supervised Acoustic Subword Unit Discovery and Lexicon Development Using Hidden Markov Models
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Sign language technology, unlike spoken language technology, is an emerging area of research. Sign language technologies can help in bridging the gap between the Deaf community and the hearing community. One such computer-aided technology is sign language ...
Despite the progress made in recent years in addressing natural language understanding (NLU) challenges, the majority of this progress remains to be concentrated on resource-rich languages like English. This work focuses on Persian language, one of the wid ...
State-of-the-art acoustic models for Automatic Speech Recognition (ASR) are based on Hidden Markov Models (HMM) and Deep Neural Networks (DNN) and often require thousands of hours of transcribed speech data during training. Therefore, building multilingual ...
Speech signal conveys several kinds of information such as a message, speaker identity, emotional state of the speaker and social state of the speaker. Automatic speech assessment is a broad area that refers to using automatic methods to predict human judg ...
Adaptability and ease of programming are key features necessary for a wider spread of robotics in factories and everyday assistance. Learning from demonstration (LfD) is an approach to address this problem. It aims to develop algorithms and interfaces such ...
Recent breakthroughs in deep learning often rely on representation learning and knowledge transfer. In recent years, unsupervised and self-supervised techniques for learning speech representation were developed to foster automatic speech recognition. Up to ...
EUROPEAN ASSOC SIGNAL SPEECH & IMAGE PROCESSING-EURASIP2021
Subword modeling for zero-resource languages aims to learn low-level representations of speech audio without using transcriptions or other resources from the target language (such as text corpora or pronunciation dictionaries). A good representation should ...
Biological oscillators are pervasive in biology, covering all aspects of life from enzyme kinetics reactions to population dynamics. Although their behaviour has been intensively studied in the last decades, the recent advances of high-throughput experimen ...
We propose an information theoretic framework for quantitative assessment of acoustic models used in hidden Markov model (HMM) based automatic speech recognition (ASR). The HMM backend expects that (i) the acoustic model yields accurate state conditional e ...
Many factors influence learners' performance on an activity beyond the knowledge required. Learners' on-task effort has been acknowledged for strongly relating to their educational outcomes, reflecting how actively they are engaged in that activity. Howeve ...