Publication

Non-LUT field-programmable gate arrays

Abstract

New logic blocks capable of replacing the use of Look-Up Tables (LUTs) in integrated circuits, such as Field-Programmable Gate Arrays (FPGAs), are disclosed herein. In one embodiment, the new logic block is a tree structure comprised of a number of levels of cells with each cell consisting of a logic gate or the functional equivalent of a logic gate, one or more selectable inverters, and wherein the inputs of the logic block consist of the inputs to the logic gate or functional equivalent of the logic gate and inputs to the selectable inverters. The new logic blocks can map circuits more efficiently than LUTs, because they include multi-output blocks and can cover more logic depth due to the higher input and output bandwidth.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (34)
Field-programmable gate array
A field-programmable gate array (FPGA) is an integrated circuit designed to be configured after manufacturing. The FPGA configuration is generally specified using a hardware description language (HDL), similar to that used for an application-specific integrated circuit (ASIC). Circuit diagrams were previously used to specify the configuration, but this is increasingly rare due to the advent of electronic design automation tools. FPGAs contain an array of programmable logic blocks, and a hierarchy of reconfigurable interconnects allowing blocks to be wired together.
Logic gate
A logic gate is an idealized or physical device that performs a Boolean function, a logical operation performed on one or more binary inputs that produces a single binary output. Depending on the context, the term may refer to an ideal logic gate, one that has, for instance, zero rise time and unlimited fan-out, or it may refer to a non-ideal physical device (see ideal and real op-amps for comparison). In the real world, the primary way of building logic gates uses diodes or transistors acting as electronic switches.
Programmable logic device
A programmable logic device (PLD) is an electronic component used to build reconfigurable digital circuits. Unlike digital logic constructed using discrete logic gates with fixed functions, a PLD has an undefined function at the time of manufacture. Before the PLD can be used in a circuit it must be programmed to implement the desired function. Compared to fixed logic devices, programmable logic devices simplify the design of complex logic and may offer superior performance.
Show more
Related publications (102)

Evaluating, Exploiting, and Hiding Power Side-Channel Leakage of Remote FPGAs

Ognjen Glamocanin

The pervasive adoption of field-programmable gate arrays (FPGAs) in both cyber-physical systems and the cloud has raised many security issues. Being integrated circuits, FPGAs are susceptible to fault and power side-channel attacks, which require physical ...
EPFL2023

Automating the Design of Programmable Interconnect for Reconfigurable Architectures

Stefan Nikolic

With Moore's law coming to an end, increasingly more hope is being put in specialized hardware implemented on reconfigurable architectures such as Field-Programmable Gate Arrays (FPGAs). Yet, it is often neglected that these architectures themselves experi ...
EPFL2023

A Visionary Look at the Security of Reconfigurable Cloud Computing

Francesco Regazzoni, Mirjana Stojilovic

Field-programmable gate arrays (FPGAs) have become critical components in many cloud computing platforms. These devices possess the fine-grained parallelism and specialization needed to accelerate applications ranging from machine learning to networking an ...
2023
Show more
Related MOOCs (5)
Electronics
Introduction à l’électronique analogique- seconde partie. Fonctions linéaires de base réalisée à l’aide de transistor bipolaire.
Electronics
Introduction à l’électronique analogique- seconde partie. Fonctions linéaires de base réalisée à l’aide de transistor bipolaire.
Signs and LED displays
Comprendre le fonctionnement des enseignes et des afficheurs à LED, depuis les petites enseignes à motifs fixes jusqu'aux écrans géants à LED. Apprendre à les fabriquer et à les programmer les microc
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.