How Energy Metabolism Supports Cerebral Function: Insights from 13C Magnetic Resonance Studies In vivo
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Magnetic resonance spectroscopy is a powerful, non-invasive, quantitative imaging technique that allows for the measurement of brain metabolites that has demonstrated utility in diagnosing and characterizing a broad range of neurological diseases. Its impa ...
Magnetic resonance spectroscopy (MRS) is the only technique that can detect endogenous metabolites directly and non-invasively in vivo. It allows to identify different metabolites and analyze the dynamic neurochemical processes in the brain, skeletal muscl ...
EPFL2023
, , ,
Solid-state photochemically induced dynamic nuclear polarization (photo-CIDNP) is a nuclear magnetic resonance spectroscopy technique in which nuclear spin hyperpolarization is generated upon optical irradiation of an appropriate donor-acceptor system. Unt ...
Magnetic Resonance Spectroscopy (MRS) is the only technique capable of measuring a large number of metabolites simultaneously in vivo. Ultra-high magnetic fields (UHF) combined with ultra-short echo time (TE) sequences allow the detection of high-quality 1 ...
Disturbances in the brain's capacity to meet its energy demand increase the risk of synaptic loss, neurodegeneration, and cognitive decline. Nutritional and metabolic interventions that target metabolic pathways combined with diagnostics to identify defici ...
This thesis is composed of four studies centered on investigating cerebral metabolism using magnetic resonance spectroscopy (MRS) of hyperpolarized and non-hyperpolarized compounds at ultra-high field.
In the first two chapters, we studied longitudinally t ...
Brain metabolism evolves rapidly during early post‐natal development in the rat. While changes in amino acids, energy metabolites, antioxidants or metabolites involved in phospholipid metabolism have been reported in the early stages, neurometabolic change ...
The severe social and economic burden of stroke is a strong motivation for the exploration of innovative medical approaches. In this context, magnetic resonance (MR) of hyperpolarized (HP) molecular agents via dissolution dynamic nuclear polarization (dDNP ...
Although less often investigated than the positive blood-oxygen-level-dependent (BOLD) signal, a negative BOLD signal has also been observed under certain conditions, which could have a neuronal origin. To further investigate the negative BOLD signal from ...
Cerebral metabolism, which can be monitored by magnetic resonance spectroscopy (MRS), changes rapidly after brain ischaemic injury. Hyperpolarisation techniques boost (13)C MRS sensitivity by several orders of magnitude, thereby enabling in vivo monitoring ...