Locality of referenceIn computer science, locality of reference, also known as the principle of locality, is the tendency of a processor to access the same set of memory locations repetitively over a short period of time. There are two basic types of reference locality - temporal and spatial locality. Temporal locality refers to the reuse of specific data and/or resources within a relatively small time duration. Spatial locality (also termed data locality) refers to the use of data elements within relatively close storage locations.
Multipartite graphIn graph theory, a part of mathematics, a k-partite graph is a graph whose vertices are (or can be) partitioned into k different independent sets. Equivalently, it is a graph that can be colored with k colors, so that no two endpoints of an edge have the same color. When k = 2 these are the bipartite graphs, and when k = 3 they are called the tripartite graphs. Bipartite graphs may be recognized in polynomial time but, for any k > 2 it is NP-complete, given an uncolored graph, to test whether it is k-partite.
CPU cacheA CPU cache is a hardware cache used by the central processing unit (CPU) of a computer to reduce the average cost (time or energy) to access data from the main memory. A cache is a smaller, faster memory, located closer to a processor core, which stores copies of the data from frequently used main memory locations. Most CPUs have a hierarchy of multiple cache levels (L1, L2, often L3, and rarely even L4), with different instruction-specific and data-specific caches at level 1.
Cache control instructionIn computing, a cache control instruction is a hint embedded in the instruction stream of a processor intended to improve the performance of hardware caches, using foreknowledge of the memory access pattern supplied by the programmer or compiler. They may reduce cache pollution, reduce bandwidth requirement, bypass latencies, by providing better control over the working set. Most cache control instructions do not affect the semantics of a program, although some can.
Divide-and-conquer algorithmIn computer science, divide and conquer is an algorithm design paradigm. A divide-and-conquer algorithm recursively breaks down a problem into two or more sub-problems of the same or related type, until these become simple enough to be solved directly. The solutions to the sub-problems are then combined to give a solution to the original problem. The divide-and-conquer technique is the basis of efficient algorithms for many problems, such as sorting (e.g., quicksort, merge sort), multiplying large numbers (e.
Strongly regular graphIn graph theory, a strongly regular graph (SRG) is defined as follows. Let G = (V, E) be a regular graph with v vertices and degree k. G is said to be strongly regular if there are also integers λ and μ such that: Every two adjacent vertices have λ common neighbours. Every two non-adjacent vertices have μ common neighbours. The complement of an srg(v, k, λ, μ) is also strongly regular. It is a srg(v, v − k − 1, v − 2 − 2k + μ, v − 2k + λ). A strongly regular graph is a distance-regular graph with diameter 2 whenever μ is non-zero.
Social networkA social network is a social structure made up of a set of social actors (such as individuals or organizations), sets of dyadic ties, and other social interactions between actors. The social network perspective provides a set of methods for analyzing the structure of whole social entities as well as a variety of theories explaining the patterns observed in these structures. The study of these structures uses social network analysis to identify local and global patterns, locate influential entities, and examine network dynamics.
Randomized algorithmA randomized algorithm is an algorithm that employs a degree of randomness as part of its logic or procedure. The algorithm typically uses uniformly random bits as an auxiliary input to guide its behavior, in the hope of achieving good performance in the "average case" over all possible choices of random determined by the random bits; thus either the running time, or the output (or both) are random variables.
Cache replacement policiesIn computing, cache replacement policies (also frequently called cache replacement algorithms or cache algorithms) are optimizing instructions, or algorithms, that a computer program or a hardware-maintained structure can utilize in order to manage a cache of information stored on the computer. Caching improves performance by keeping recent or often-used data items in memory locations that are faster or computationally cheaper to access than normal memory stores.
Social network analysisSocial network analysis (SNA) is the process of investigating social structures through the use of networks and graph theory. It characterizes networked structures in terms of nodes (individual actors, people, or things within the network) and the ties, edges, or links (relationships or interactions) that connect them. Examples of social structures commonly visualized through social network analysis include social media networks, meme spread, information circulation, friendship and acquaintance networks, peer learner networks, business networks, knowledge networks, difficult working relationships, collaboration graphs, kinship, disease transmission, and sexual relationships.