Induction of regular languagesIn computational learning theory, induction of regular languages refers to the task of learning a formal description (e.g. grammar) of a regular language from a given set of example strings. Although E. Mark Gold has shown that not every regular language can be learned this way (see language identification in the limit), approaches have been investigated for a variety of subclasses. They are sketched in this article. For learning of more general grammars, see Grammar induction.
Regular grammarIn theoretical computer science and formal language theory, a regular grammar is a grammar that is right-regular or left-regular. While their exact definition varies from textbook to textbook, they all require that all production rules have at most one non-terminal symbol; that symbol is either always at the end or always at the start of the rule's right-hand side. Every regular grammar describes a regular language.
Penrose tilingA Penrose tiling is an example of an aperiodic tiling. Here, a tiling is a covering of the plane by non-overlapping polygons or other shapes, and a tiling is aperiodic if it does not contain arbitrarily large periodic regions or patches. However, despite their lack of translational symmetry, Penrose tilings may have both reflection symmetry and fivefold rotational symmetry. Penrose tilings are named after mathematician and physicist Roger Penrose, who investigated them in the 1970s.
Aperiodic tilingAn aperiodic tiling is a non-periodic tiling with the additional property that it does not contain arbitrarily large periodic regions or patches. A set of tile-types (or prototiles) is aperiodic if copies of these tiles can form only non-periodic tilings. The Penrose tilings are a well-known example of aperiodic tilings. In March 2023, four researchers, David Smith, Joseph Samuel Myers, Craig S. Kaplan, and Chaim Goodman-Strauss, announced the proof that the tile discovered by David Smith is an aperiodic monotile, i.