Thermal mending in E-glass reinforced poly(epsilon-caprolactone)/epoxy blends
Related publications (64)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Damage recovery after low-velocity impact has been assessed in woven E-glass fibre-reinforced polymer composites with an epoxy matrix and a blend of epoxy and 25 vol% of poly(e-caprolactone) (PCL). Impact was carried out at three energy levels (8.5, 17, 34 ...
Structural fibre-reinforced composites based on brittle matrices such as epoxy resins may be subject to short-term subcritical matrix damage that develops with time to the point where it may compromise the integrity of the structure. Currently, components ...
Thermoplastic polymer composites (TPC) with multiple fabric layers of continuous fiber reinforcement are laminate sheets designed to be thermally stamped and overmolded leading to low cycle times and thus high volume composite parts. Injection over-molding ...
In this work, resins based on diglycidyl ether of bisphenol A (DGEBA) epoxy and a latent hardener, dicyandiamide (DICY), as well as carbon fiber (CF) composites based on them, were prepared with three commercial accelerators: a methylene bis (phenyl dimeth ...
In the current study, the glass transition and tensile behavior of three different cold-curing two-component epoxies, commercially available as structural adhesives for carbon fiber reinforced polymer (CFRP) strengthening of concrete and steel structures, ...
Phase-separated blends of epoxy and poly(ε-caprolactone) (PCL) provide crack repair in composites after a thermal treatment at 150 °C, but decrease the material’s fracture toughness. This article investigates the combination of healing with interlaminar fr ...
There is a growing interest in exploring novel material combinations and processing technology to manufacture complex 3D shaped polymer and composite structures. In the field of prosthetics and orthotics, this need is significant with additional challenges ...
Layered fiber reinforced composite materials are prone to fracture in planes parallel to the direction of fibers leading to extensive delamination or intralaminar fracture. This phenomenon of crack propagation is frequently accompanied by significant incre ...
This paper presents detailed experimental information on mode-II delamination development in fibre/epoxy composite materials and provides observations about the process zone in the vicinity of the crack tip. It is shown that the energy dissipated in delami ...
Structural components used in civil engineering applications are often subjected to compressive loads. Unlike the tensile strength of fiber-reinforced polymer (FRP) materials, their compressive strength is resin-dominated, exhibiting lower values and more ...