Publication

Stresses and Strains in Cruciform Samples Deformed in Tension

Abstract

The stress and strain relationship in the gauge region of six cruciform geometries is studied: the ISO standard geometry with slits in arms, two geometries with thinned gauge areas, two geometries with thinned gauge areas and slits in arms, and one modified ISO standard geometry with slits in arms and a thinned gauge area. For all the geometries, finite element simulations are performed under uniaxial loading to compare the plastic strain, the von Mises stress distribution and the in-plane stress evolution. Results show that less plastic strain can be achieved in the gauge of the two ISO standard geometries. For the remaining cruciform geometries, a strong non-linear coupling between applied forces in arms and gauge stresses is generated. The evolution of this non-linear coupling depends on the geometry type, applied biaxial load ratio and the elastic-plastic properties of the material. Geometry selection criteria are proposed to reduce this non-linear coupling.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (33)
Plasticity (physics)
In physics and materials science, plasticity (also known as plastic deformation) is the ability of a solid material to undergo permanent deformation, a non-reversible change of shape in response to applied forces. For example, a solid piece of metal being bent or pounded into a new shape displays plasticity as permanent changes occur within the material itself. In engineering, the transition from elastic behavior to plastic behavior is known as yielding. Plastic deformation is observed in most materials, particularly metals, soils, rocks, concrete, and foams.
Stress–strain curve
In engineering and materials science, a stress–strain curve for a material gives the relationship between stress and strain. It is obtained by gradually applying load to a test coupon and measuring the deformation, from which the stress and strain can be determined (see tensile testing). These curves reveal many of the properties of a material, such as the Young's modulus, the yield strength and the ultimate tensile strength. Generally speaking, curves representing the relationship between stress and strain in any form of deformation can be regarded as stress–strain curves.
Deformation (engineering)
In engineering, deformation refers to the change in size or shape of an object. Displacements are the absolute change in position of a point on the object. Deflection is the relative change in external displacements on an object. Strain is the relative internal change in shape of an infinitesimally small cube of material and can be expressed as a non-dimensional change in length or angle of distortion of the cube. Strains are related to the forces acting on the cube, which are known as stress, by a stress-strain curve.
Show more
Related publications (48)

Finite element investigation of the Slotted-Hidden-Gap (SHG) connection for square HSS bracing members under cyclic loading

Hanh Nguyen Joëlle Luu

The Slotted-Hidden-Gap (SHG) connection is an improved version of the conventional welded tube-togusset connection between hollow braces and framing elements used in Concentrically Braced Frames (CBFs), offering an enhanced performance without the need for ...
2023

Comparing the Buckling Strength of Spherical Shells With Dimpled Versus Bumpy Defects

Pedro Miguel Nunes Pereira de Almeida Reis, Fani Derveni, Arefeh Abbasi

We investigate the effect of defect geometry in dictating the sensitivity of the critical buckling conditions of spherical shells under external pressure loading. Specifically, we perform a comparative study between shells containing dimpled (inward) versu ...
ASME2023

Dynamic study of contact damping in martensitic stainless steels using nano-indentation

Philippe Spätig, Hans-Peter Seifert

The study was undertaken to gain insight into the micro-mechanisms controlling plasticity at the micrometer scale of elastic-plastic metallic alloys. Dynamic nano-indentation tests, where a small harmonic force amplitude is superimposed during loading, ref ...
ELSEVIER2020
Show more
Related MOOCs (4)
Introduction to Geographic Information Systems (part 1)
Organisé en deux parties, ce cours présente les bases théoriques et pratiques des systèmes d’information géographique, ne nécessitant pas de connaissances préalables en informatique. En suivant cette
Introduction to Geographic Information Systems (part 1)
Organisé en deux parties, ce cours présente les bases théoriques et pratiques des systèmes d’information géographique, ne nécessitant pas de connaissances préalables en informatique. En suivant cette
Geographical Information Systems 1
Organisé en deux parties, ce cours présente les bases théoriques et pratiques des systèmes d’information géographique, ne nécessitant pas de connaissances préalables en informatique. En suivant cette
Show more