Key managementKey management refers to management of cryptographic keys in a cryptosystem. This includes dealing with the generation, exchange, storage, use, crypto-shredding (destruction) and replacement of keys. It includes cryptographic protocol design, key servers, user procedures, and other relevant protocols. Key management concerns keys at the user level, either between users or systems. This is in contrast to key scheduling, which typically refers to the internal handling of keys within the operation of a cipher.
Eigenvalues and eigenvectorsIn linear algebra, an eigenvector (ˈaɪgənˌvɛktər) or characteristic vector of a linear transformation is a nonzero vector that changes at most by a constant factor when that linear transformation is applied to it. The corresponding eigenvalue, often represented by , is the multiplying factor. Geometrically, a transformation matrix rotates, stretches, or shears the vectors it acts upon. The eigenvectors for a linear transformation matrix are the set of vectors that are only stretched, with no rotation or shear.
Spectrum of a matrixIn mathematics, the spectrum of a matrix is the set of its eigenvalues. More generally, if is a linear operator on any finite-dimensional vector space, its spectrum is the set of scalars such that is not invertible. The determinant of the matrix equals the product of its eigenvalues. Similarly, the trace of the matrix equals the sum of its eigenvalues. From this point of view, we can define the pseudo-determinant for a singular matrix to be the product of its nonzero eigenvalues (the density of multivariate normal distribution will need this quantity).
Rayleigh quotientIn mathematics, the Rayleigh quotient (ˈreɪ.li) for a given complex Hermitian matrix and nonzero vector is defined as:For real matrices and vectors, the condition of being Hermitian reduces to that of being symmetric, and the conjugate transpose to the usual transpose . Note that for any non-zero scalar . Recall that a Hermitian (or real symmetric) matrix is diagonalizable with only real eigenvalues. It can be shown that, for a given matrix, the Rayleigh quotient reaches its minimum value (the smallest eigenvalue of ) when is (the corresponding eigenvector).