Compact groupIn mathematics, a compact (topological) group is a topological group whose topology realizes it as a compact topological space (when an element of the group is operated on, the result is also within the group). Compact groups are a natural generalization of finite groups with the discrete topology and have properties that carry over in significant fashion. Compact groups have a well-understood theory, in relation to group actions and representation theory. In the following we will assume all groups are Hausdorff spaces.
Hermitian symmetric spaceIn mathematics, a Hermitian symmetric space is a Hermitian manifold which at every point has an inversion symmetry preserving the Hermitian structure. First studied by Élie Cartan, they form a natural generalization of the notion of Riemannian symmetric space from real manifolds to complex manifolds. Every Hermitian symmetric space is a homogeneous space for its isometry group and has a unique decomposition as a product of irreducible spaces and a Euclidean space.
Élie CartanÉlie Joseph Cartan (kaʁtɑ̃; 9 April 1869 – 6 May 1951) was an influential French mathematician who did fundamental work in the theory of Lie groups, differential systems (coordinate-free geometric formulation of PDEs), and differential geometry. He also made significant contributions to general relativity and indirectly to quantum mechanics. He is widely regarded as one of the greatest mathematicians of the twentieth century. His son Henri Cartan was an influential mathematician working in algebraic topology.
Maximal compact subgroupIn mathematics, a maximal compact subgroup K of a topological group G is a subgroup K that is a compact space, in the subspace topology, and maximal amongst such subgroups. Maximal compact subgroups play an important role in the classification of Lie groups and especially semi-simple Lie groups. Maximal compact subgroups of Lie groups are not in general unique, but are unique up to conjugation – they are essentially unique. An example would be the subgroup O(2), the orthogonal group, inside the general linear group GL(2, R).
Closed-subgroup theoremIn mathematics, the closed-subgroup theorem (sometimes referred to as Cartan's theorem) is a theorem in the theory of Lie groups. It states that if H is a closed subgroup of a Lie group G, then H is an embedded Lie group with the smooth structure (and hence the group topology) agreeing with the embedding. One of several results known as Cartan's theorem, it was first published in 1930 by Élie Cartan, who was inspired by John von Neumann's 1929 proof of a special case for groups of linear transformations.
G2 (mathematics)DISPLAYTITLE:G2 (mathematics) In mathematics, G2 is the name of three simple Lie groups (a complex form, a compact real form and a split real form), their Lie algebras as well as some algebraic groups. They are the smallest of the five exceptional simple Lie groups. G2 has rank 2 and dimension 14. It has two fundamental representations, with dimension 7 and 14. The compact form of G2 can be described as the automorphism group of the octonion algebra or, equivalently, as the subgroup of SO(7) that preserves any chosen particular vector in its 8-dimensional real spinor representation (a spin representation).
Compact spaceIn mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it includes all limiting values of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval [0,1] would be compact.
Linear formIn mathematics, a linear form (also known as a linear functional, a one-form, or a covector) is a linear map from a vector space to its field of scalars (often, the real numbers or the complex numbers). If V is a vector space over a field k, the set of all linear functionals from V to k is itself a vector space over k with addition and scalar multiplication defined pointwise. This space is called the dual space of V, or sometimes the algebraic dual space, when a topological dual space is also considered.
SO(8)In mathematics, SO(8) is the special orthogonal group acting on eight-dimensional Euclidean space. It could be either a real or complex simple Lie group of rank 4 and dimension 28. Like all special orthogonal groups of , SO(8) is not simply connected, having a fundamental group isomorphic to Z2. The universal cover of SO(8) is the spin group Spin(8). The center of SO(8) is Z2, the diagonal matrices {±I} (as for all SO(2n) with 2n ≥ 4), while the center of Spin(8) is Z2×Z2 (as for all Spin(4n), 4n ≥ 4).
Vector spaceIn mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called vectors, may be added together and multiplied ("scaled") by numbers called scalars. Scalars are often real numbers, but can be complex numbers or, more generally, elements of any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called vector axioms. The terms real vector space and complex vector space are often used to specify the nature of the scalars: real coordinate space or complex coordinate space.