Galactic planeThe galactic plane is the plane on which the majority of a disk-shaped galaxy's mass lies. The directions perpendicular to the galactic plane point to the galactic poles. In actual usage, the terms galactic plane and galactic poles usually refer specifically to the plane and poles of the Milky Way, in which Planet Earth is located. Some galaxies are irregular and do not have any well-defined disk. Even in the case of a barred spiral galaxy like the Milky Way, defining the galactic plane is slightly imprecise and arbitrary since the stars are not perfectly coplanar.
Galactic haloA galactic halo is an extended, roughly spherical component of a galaxy which extends beyond the main, visible component. Several distinct components of galaxies comprise the halo: the stellar halo the galactic corona (hot gas, i.e. a plasma) the dark matter halo The distinction between the halo and the main body of the galaxy is clearest in spiral galaxies, where the spherical shape of the halo contrasts with the flat disc. In an elliptical galaxy, there is no sharp transition between the other components of the galaxy and the halo.
Galactic discA galactic disc (or galactic disk) is a component of disc galaxies, such as spiral galaxies, lenticular galaxies, and the Milky Way. Galactic discs consist of a stellar component (composed of most of the galaxy's stars) and a gaseous component (mostly composed of cool gas and dust). The stellar population of galactic discs tend to exhibit very little random motion with most of its stars undergoing nearly circular orbits about the galactic center.
Type II supernovaA Type II supernova (plural: supernovae or supernovas) results from the rapid collapse and violent explosion of a massive star. A star must have at least eight times, but no more than 40 to 50 times, the mass of the Sun () to undergo this type of explosion. Type II supernovae are distinguished from other types of supernovae by the presence of hydrogen in their spectra. They are usually observed in the spiral arms of galaxies and in H II regions, but not in elliptical galaxies; those are generally composed of older, low-mass stars, with few of the young, very massive stars necessary to cause a supernova.
ApsisAn apsis (; ˈæpsɪˌdiːz ) is the farthest or nearest point in the orbit of a planetary body about its primary body. The line of apsides is the line connecting the two extreme values. For example, for orbits about the Sun the apsides are called aphelion (farthest) and perihelion (nearest). The Moon's two apsides are the farthest point, apogee, and the nearest point, perigee, of its orbit around the host Earth. The Earth's two apsides are the farthest point, aphelion, and the nearest point, perihelion, of its orbit around the host Sun.
Superluminous supernovaA super-luminous supernova (SLSN, plural super luminous supernovae or SLSNe) is a type of stellar explosion with a luminosity 10 or more times higher than that of standard supernovae. Like supernovae, SLSNe seem to be produced by several mechanisms, which is readily revealed by their light-curves and spectra. There are multiple models for what conditions may produce an SLSN, including core collapse in particularly massive stars, millisecond magnetars, interaction with circumstellar material (CSM model), or pair-instability supernovae.
Gamma rayA gamma ray, also known as gamma radiation (symbol γ or ), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically shorter than those of X-rays. With frequencies above 30 exahertz (3e19Hz), it imparts the highest photon energy. Paul Villard, a French chemist and physicist, discovered gamma radiation in 1900 while studying radiation emitted by radium.
Amateur astronomyAmateur astronomy is a hobby where participants enjoy observing or imaging celestial objects in the sky using the unaided eye, binoculars, or telescopes. Even though scientific research may not be their primary goal, some amateur astronomers make contributions in doing citizen science, such as by monitoring variable stars, double stars, sunspots, or occultations of stars by the Moon or asteroids, or by discovering transient astronomical events, such as comets, galactic novae or supernovae in other galaxies.
Orbital elementsOrbital elements are the parameters required to uniquely identify a specific orbit. In celestial mechanics these elements are considered in two-body systems using a Kepler orbit. There are many different ways to mathematically describe the same orbit, but certain schemes, each consisting of a set of six parameters, are commonly used in astronomy and orbital mechanics. A real orbit and its elements change over time due to gravitational perturbations by other objects and the effects of general relativity.
Accretion diskAn accretion disk is a structure (often a circumstellar disk) formed by diffuse material in orbital motion around a massive central body. The central body is most frequently a star. Friction, uneven irradiance, magnetohydrodynamic effects, and other forces induce instabilities causing orbiting material in the disk to spiral inward toward the central body. Gravitational and frictional forces compress and raise the temperature of the material, causing the emission of electromagnetic radiation.