Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Every year in Europe 1.5 million patients suffer a new stroke. Despite the further developments in acute therapy with nationwide stroke units, thrombolysis, thrombectomy and post-acute neurorehabilitation, only a small proportion of patients recover to a satisfactory degree allowing them to return to their normal social and professional life. This makes stroke the main cause of long-term disability with a corresponding impact on patient lives, socioeconomics and the healthcare system. Thus, the concepts of neurorehabilitation have to be extended to enhance the effects of rehabilitative treatment strategies. To achieve this, an understanding of the prediction of the course of recovery, the mechanisms underlying functional recovery and factors influencing recovery have to be enhanced for the development towards patient-tailored precision medicine approaches. A central point towards this is the understanding of stroke as a disease, which not only influences the damaged area but also the associated network. This is crucial for the understanding of the stroke-induced deficits, for prediction of recovery and options for interventional treatment strategies, which can target different areas in this network (e.g. primary motor cortex and secondary motor regions) based on individual factors of the patient. The present article discusses the importance of network alterations for motor neurorehabilitation after a stroke and which novel options, concepts and consequences could arise from this for neurorehabilitation.