Template-matching for text-dependent speaker verification
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Any biometric recognizer is vulnerable to spoofing attacks and hence voice biometric, also called automatic speaker verification (ASV), is no exception; replay, synthesis, and conversion attacks all provoke false acceptances unless countermeasures are used ...
Overlapping speech has been identified as one of the main sources of errors in diarization of meeting room conversations. Therefore, overlap detection has become an important step prior to speaker diarization. Studies on conversational analysis have shown ...
Recent research has demonstrated the effectiveness of vocal tract length normalization (VTLN) as a rapid adaptation technique for statistical parametric speech synthesis. VTLN produces speech with naturalness preferable to that of MLLR-based adaptation tec ...
In this paper, modified group delay (MODGD) features are used to model target speakers in the Total Variability Space (TVS) framework for speaker recognition. MODGD based features have been shown to improve speaker recognition performance owing to the abil ...
This paper presents Subspace Gaussian Mixture Model (SGMM) approach employed as a probabilistic generative model to estimate speaker vector representations to be subsequently used in the speaker verification task. SGMMs have already been shown to significa ...
This paper presents Subspace Gaussian Mixture Model (SGMM) approach employed as a probabilistic generative model to estimate speaker vector representations to be subsequently used in the speaker verification task. SGMMs have already been shown to significa ...
Phonological studies suggest that the typical subword units such as phones or phonemes used in automatic speech recognition systems can be decomposed into a set of features based on the articulators used to produce the sound. Most of the current approaches ...
Manual transcription of audio databases for automatic speech recognition (ASR) training is a costly and time-consuming process. State-of-the-art hybrid ASR systems that are based on deep neural networks (DNN) can exploit un-transcribed foreign data during ...
We investigate speaker adaptation in the context of deep neural network (DNN) based speech synthesis. More specifically, our current work focuses on the exploitation of auxiliary information such as gender, speaker identity or age during the DNN training p ...
Posterior features have been shown to yield very good performance in multiple contexts including speech recognition, spoken term detection, and template matching. These days, posterior features are usually estimated at the output of a neural network. More ...