Publication

H- ion source for CERN's Linac4 accelerator

Stefano Mattei
2017
EPFL thesis
Abstract

Linac4 is the new negative hydrogen ion (H-) linear accelerator of the European Organization for Nuclear Research (CERN). Its ion source operates on the principle of Radio-Frequency Inductively Coupled Plasma (RF-ICP) and it is required to provide 50 mA of H- beam in pulses of 600 us with a repetition rate up to 2 Hz and within an RMS emittance of 0.25 pi mm mrad in order to fullfil the requirements of the accelerator. This thesis is dedicated to the characterization of the hydrogen plasma in the Linac4 H- ion source. We have developed a Particle-In-Cell Monte Carlo Collision (PIC-MCC) code to simulate the RF-ICP heating mechanism and performed measurements to benchmark the fraction of the simulation outputs that can be experimentally accessed. The code solves self-consistently the interaction between the electromagnetic field generated by the RF coil and the resulting plasma response, including a kinetic description of charged and neutral species. A fully-implicit implementation allowed to simulate the high density regime of the Linac4 H- ion source, ensuring the energy conservation while maintaining the computational resources tractable. We studied the capacitive to inductive transition characteristic of the initial phase of the pulsed discharge. The simulation results were confirmed by time-resolved photometry measurements and allowed quantifying the effect of the hydrogen pressure and of the external magnetic cusp field on the transition dynamics. This provided insights into possible modifications to the magnetic cusp field configuration to maximize the power deposited to the plasma. The optimal ion source configuration maximizes the density of volume produced H-, the flux of H0 atoms onto the cesiated molybdenum plasma electrode surface at the origin of H- emission, and minimizes the electron density and energy in the beam formation region. We simulated the high-density regime (10^19 m-3) representative of the nominal operation of the Linac4 ion source during beam extraction. We performed a parametric study of the RF current, hydrogen pressure and magnetic configuration (cusp and filter) to assess their impact on the plasma parameters. The simulation results allowed assessment of these parameters and provided guidelines for the optimization of the ion source operational and design parameters. The simulation results of electron density, electron energy and hydrogen dissociation degree showed excellent agreement with optical emission spectroscopy measurements both as a function of RF coil current and magnetic configuration. The outputs of these simulations provide crucial inputs to beam formation and extraction physics models. Dedicated PIC software packages are being developed that will eventually shed insight into essential beam parameters such as the intensity and emittance of the H° beam and the intensity of the co-extracted electrons.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (39)
Simulation
A simulation is the imitation of the operation of a real-world process or system over time. Simulations require the use of models; the model represents the key characteristics or behaviors of the selected system or process, whereas the simulation represents the evolution of the model over time. Often, computers are used to execute the simulation. Simulation is used in many contexts, such as simulation of technology for performance tuning or optimizing, safety engineering, testing, training, education, and video games.
Inductively coupled plasma atomic emission spectroscopy
Inductively coupled plasma atomic emission spectroscopy (ICP-AES), also referred to as inductively coupled plasma optical emission spectroscopy (ICP-OES), is an analytical technique used for the detection of chemical elements. It is a type of emission spectroscopy that uses the inductively coupled plasma to produce excited atoms and ions that emit electromagnetic radiation at wavelengths characteristic of a particular element. The plasma is a high temperature source of ionised source gas (often argon).
Plasma (physics)
Plasma () is one of four fundamental states of matter, characterized by the presence of a significant portion of charged particles in any combination of ions or electrons. It is the most abundant form of ordinary matter in the universe, being mostly associated with stars, including the Sun. Extending to the rarefied intracluster medium and possibly to intergalactic regions, plasma can be artificially generated by heating a neutral gas or subjecting it to a strong electromagnetic field.
Show more
Related publications (76)

Characterization of Transverse Instabilities Driven by Electron Cloud

Sofia Carolina Johannesson

Electron cloud continues to be one of the main limiting factors of the Large Hadron Collider (LHC), the biggest accelerator at CERN. These clouds form in the beam chamber when positively charged particles are passing through and cause unwanted effects in b ...
EPFL2024

Investigating the impact of the molecular charge-exchange rate on detached SOLPS-ITER simulations

Basil Duval, Holger Reimerdes, Christian Gabriel Theiler, Kevin Henricus Annemarie Verhaegh

Plasma-molecular interactions generate molecular ions which react with the plasma and contribute to detachment through molecular activated recombination (MAR), reducing the ion target flux, and molecular activated dissociation (MAD), both of which create e ...
IOP Publishing Ltd2023

Modelling of nonneutral plasmas trapped by electric and magnetic fields relevant to gyrotron electron guns

Guillaume Michel Le Bars

Gyrotrons are a class of high-power vacuum-electronics microwave sources, which are envisioned to play an important role in the domain of magnetically confined fusion plasmas. Indeed, only gyrotrons are capable of producing continuous electromagnetic waves ...
EPFL2023
Show more
Related MOOCs (21)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.