Publication

Two-Dimensional Numerical Simulation of Bed-Load Transport of a Finite-Depth Sediment Layer: Applications to Channel Flushing

Carmelo Juez Jiménez
2017
Journal paper
Abstract

Numerical modeling of bed-load transport in shallow flows, particularly oriented toward environmental flows, is an active field of research. Nevertheless, other possible applications exist. In particular, bed-load transport phenomena are relevant in urban drainage systems, including sewers. However, few applications of coupled two-dimensional (2D) shallow-water and bed-load transport models can be found, and their transfer from environmental applications-usually river and floodplain-into sewer applications requires some adaptation. Unlike to river systems, where there is a thick layer of sediment that constitutes a movable riverbed, sewer systems have thin layers of sediment that need to be removed, thus exposing a rigid, nonerodible surface. This problem requires careful numerical treatment to avoid generating errors and instability in the simulation. This paper deals with a numerical approach to tackle this issue in an efficient way that allows large-scale studies to be performed and provides empirical evidence that the proposed approach is accurate and applicable for sewage and channel-flushing problems. (C) 2017 American Society of Civil Engineers.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.