Publication

New evidence for disinfection, self-cleaning and pollutant degradation mediated by GF-TiO2-Cu mats under solar/visible light in mild oxidative conditions

Abstract

This study presents the performance of GF-mats loaded with TiO2 and Cu under solar/visible light leading to bacterial inactivation and pollutant degradation at both solid-air and solid-liquid interfaces. The GF-mats show effective water disinfection, self-cleaning and degradation of an organic pollutant in solution. Cleaning of the GF-mats was found to be a necessary step before grafting TiO2 and Cu/CuO in amounts of TiO2 (10%-25% by weight) and Cu (0.03%-0.45% by weight) respectively. A GF-mat consisting of 15.4% TiO2 and 0.45% Cu led to bacterial disinfection within similar to 30 min under solar irradiation (290-800 nm light) and within similar to 60 min under visible light irradiation (400-800 nm). The oxidative radicals generated on the TiO2-Cu surface leading to disinfection, self-cleaning and abatement of the pollutant were identified and the diffusion length from the GF-mat was estimated for the most active HO2 center dot radical. The pH/surface potential changes in solution during the degradation of methylene blue (MB), which was taken as a model pollutant, were followed by means of a microelectrode. A GF-mat loaded with TiO2 13.1% and Cu 0.03% by weight led to the degradation of a dilute pollutant solution within similar to 100 min. The pollutant degradation was assessed by high performance liquid chromatography (HPLC) by following the decrease of the intensity of its characteristic absorbance peaks. The TiO2 and Cu eluted from the mat during the degradation of MB were detected by inductively coupled plasma mass-spectrometry (ICP-MS). The surface properties of the mats were investigated by scanning electron microscopy (SEM). Evidence is presented for the redox events on the GF-TiO2-Cu mats during the self-cleaning reactions by XPS. (C) 2017 Elsevier B.V. All rights reserved.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (34)
Ultraviolet germicidal irradiation
Ultraviolet germicidal irradiation (UVGI) is a disinfection technique employing ultraviolet (UV) light, particularly UV-C (180-280 nm), to kill or inactivate microorganisms. UVGI primarily inactivates microbes by damaging their genetic material, thereby inhibiting their capacity to carry out vital functions. The use of UVGI extends to an array of applications, encompassing food, surface, air, and water disinfection. UVGI devices can inactivate microorganisms including bacteria, viruses, fungi, molds, and other pathogens.
Persistent organic pollutant
Persistent organic pollutants (POPs) are organic compounds that are resistant to degradation through chemical, biological, and photolytic processes. They are toxic chemicals that adversely affect human health and the environment around the world. Because they can be transported by wind and water, most POPs generated in one country can and do affect people and wildlife far from where they are used and released.
Scanning electron microscope
A scanning electron microscope (SEM) is a type of electron microscope that produces images of a sample by scanning the surface with a focused beam of electrons. The electrons interact with atoms in the sample, producing various signals that contain information about the surface topography and composition of the sample. The electron beam is scanned in a raster scan pattern, and the position of the beam is combined with the intensity of the detected signal to produce an image.
Show more
Related publications (41)

Polydopamine-coated photoautotrophic bacteria for improving extracellular electron transfer in living photovoltaics

Ardemis Anoush Boghossian, Melania Reggente, Mohammed Mouhib, Hanxuan Wang, Charlotte Elisabeth Marie Roullier, Fabian Fischer, Patricia Brandl

Living photovoltaics are microbial electrochemical devices that use whole cell–electrode interactions to convert solar energy to electricity. The bottleneck in these technologies is the limited electron transfer between the microbe and the electrode surfac ...
2024

Why five decades of massive research on heterogeneous photocatalysis, especially on TiO2, has not yet driven to water disinfection and detoxification applications? Critical review of drawbacks and challenges

César Pulgarin, Julian Andrés Rengifo Herrera

For fifty years, heterogeneous photocatalysis has been considered as having potential to remove organic and microbiological pollutants from water under either artificial UV light or sunlight irradiation. However, after tens of thousands of published resear ...
Lausanne2023

Cryo-EM structure of native human thyroglobulin

Henning Paul-Julius Stahlberg

The thyroglobulin (TG) protein is essential to thyroid hormone synthesis, plays a vital role in the regulation of metabolism, development and growth and serves as intraglandular iodine storage. Its architecture is conserved among vertebrates. Synthesis of ...
2022
Show more
Related MOOCs (15)
Water quality and the biogeochemical engine
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
Transmission Electron Microscopy for Materials Sciences
Learn about the fundamentals of transmission electron microscopy in materials sciences: you will be able to understand papers where TEM has been used and have the necessary theoretical basis for takin
Transmission Electron Microscopy for Materials Sciences
Learn about the fundamentals of transmission electron microscopy in materials sciences: you will be able to understand papers where TEM has been used and have the necessary theoretical basis for takin
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.