**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Generalized Pickands constants and stationary max-stable processes

Abstract

Pickands constants play a crucial role in the asymptotic theory of Gaussian processes. They are commonly defined as the limits of a sequence of expectations involving fractional Brownian motions and, as such, their exact value is often unknown. Recently, Dieker and Yakir (Bernoulli, 20(3), 1600-1619, 2014) derived a novel representation of Pickands constant as a simple expected value that does not involve a limit operation. In this paper we show that the notion of Pickands constants and their corresponding Dieker-Yakir representations can be extended to a large class of stochastic processes, including general Gaussian and Levy processes. We furthermore develop a link to extreme value theory and show that Pickands-type constants coincide with certain constants arising in the study of max-stable processes with mixed moving maxima representations.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (35)

Related concepts (30)

Related MOOCs (2)

Stochastic process

In probability theory and related fields, a stochastic (stəˈkæstɪk) or random process is a mathematical object usually defined as a sequence of random variables, where the index of the sequence has the interpretation of time. Stochastic processes are widely used as mathematical models of systems and phenomena that appear to vary in a random manner. Examples include the growth of a bacterial population, an electrical current fluctuating due to thermal noise, or the movement of a gas molecule.

Generalized extreme value distribution

In probability theory and statistics, the generalized extreme value (GEV) distribution is a family of continuous probability distributions developed within extreme value theory to combine the Gumbel, Fréchet and Weibull families also known as type I, II and III extreme value distributions. By the extreme value theorem the GEV distribution is the only possible limit distribution of properly normalized maxima of a sequence of independent and identically distributed random variables.

Asymptotic analysis

In mathematical analysis, asymptotic analysis, also known as asymptotics, is a method of describing limiting behavior. As an illustration, suppose that we are interested in the properties of a function f (n) as n becomes very large. If f(n) = n2 + 3n, then as n becomes very large, the term 3n becomes insignificant compared to n2. The function f(n) is said to be "asymptotically equivalent to n2, as n → ∞". This is often written symbolically as f (n) ~ n2, which is read as "f(n) is asymptotic to n2".

Advanced statistical physics

We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.

Advanced statistical physics

We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.

Michaël Unser, Julien René Pierre Fageot, John Paul Ward

In this paper, we study the compressibility of random processes and fields, called generalized Levy processes, that are solutions of stochastic differential equations driven by d-dimensional periodic Levy white noises. Our results are based on the estimati ...

We provide a computationally and statistically efficient method for estimating the parameters of a stochastic covariance model observed on a regular spatial grid in any number of dimensions. Our proposed method, which we call the Debiased Spatial Whittle l ...

We consider several aspects of conjugating symmetry methods, including the method of invariants, with an asymptotic approach. In particular we consider how to extend to the stochastic setting several ideas which are well established in the deterministic on ...