Publication

Computational development of the nanoporous materials genome

Abstract

There is currently a push towards big data and data mining in materials research to accelerate discovery. Zeolites, metal-organic frameworks and other related crystalline porous materials are not immune to this phenomenon, as evidenced by the proliferation of porous structure databases and computational gas-adsorption screening studies over the past decade. The endeavour to identify the best materials for various gas separation and storage applications has led not only to thousands of synthesized structures, but also to the development of algorithms for building hypothetical materials. The materials databases assembled with these algorithms contain a much wider range of complex pore structures than have been synthesized, with the reasoning being that we have discovered only a small fraction of realizable structures and expanding upon these will accelerate rational design. In this Review, we highlight the methods developed to build these databases, and some of the important outcomes from large-scale computational screening studies.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.