Publication

Three- or Two-Stage Stochastic Market-Clearing Algorithm?

Abstract

As the power industry considers moving from a deterministic paradigm to a stochastic one to clear the day-ahead market in systems with significant stochastic production, the following question arises: how should a stochastic clearing algorithm be formulated? Our analyses indicate that a three-stage stochastic approach is clearly superior to a two-stage one. To show this, we propose a model that includes three stages: the first one represents the day-ahead market, the second stage, the intraday market, and the third one, the real-time operation. The objective is to clear the day-ahead market, but with a prognosis of the future: the intraday market and the real-time operation. To assess the impact of the intraday market on the day-ahead outcomes, we compare the results obtained from the proposed model with those of a simpler but more common two-stage model, which represents the day-ahead market and the real-time operation.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.