Publication

Scaling effect and its impact on wavelength-scale microlenses

Abstract

We revisit the scaling laws in micro-optical systems to highlight new phenomena arising beyond a conventional optical regime, especially when the size of the system approaches to the operational wavelength. Our goal is to visualize the impact of the scaling effect in the micrometer-sized domain. First, we will show where the conventional optical regime fades away and unexpected responses arise. We will show this by using a ball-lens as an example. Second, we discuss the scaling effect in the Fresnel number of lens systems. Moving toward wavelength-scale microlenses, a specific value of Fresnel numbers leads to a giant focal shift with strong focal power. Our study will give comprehensive insights into the birth of unanticipated phenomena in miniaturized optical systems.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (32)
Lens
A lens is a transmissive optical device that focuses or disperses a light beam by means of refraction. A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (elements), usually arranged along a common axis. Lenses are made from materials such as glass or plastic and are ground, polished, or molded to the required shape. A lens can focus light to form an , unlike a prism, which refracts light without focusing.
Fresnel lens
A Fresnel lens ('freinɛl,-nəl ; 'frɛnɛl,-əl ; or freɪˈnɛl ) is a type of composite compact lens which reduces the amount of material required compared to a conventional lens by dividing the lens into a set of concentric annular sections. The simpler dioptric (purely refractive) form of the lens was first proposed by Georges-Louis Leclerc, Comte de Buffon, and independently reinvented by the French physicist Augustin-Jean Fresnel (1788–1827) for use in lighthouses.
Luneburg lens
A Luneburg lens (original German Lüneburg lens, sometimes incorrectly spelled Luneberg lens) is a spherically symmetric gradient-index lens. A typical Luneburg lens's refractive index n decreases radially from the center to the outer surface. They can be made for use with electromagnetic radiation from visible light to radio waves. For certain index profiles, the lens will form perfect geometrical s of two given concentric spheres onto each other. There are an infinite number of refractive-index profiles that can produce this effect.
Show more
Related publications (45)

Laser-based manufacturing of freeform glass micro-optics through topological transformation

Samuel Youcef Benketaf

Glass has been the material of choice for making optical elements, in large part due to its intrinsic properties: a temperature-dependent viscosity, which enables shaping the material into a broad variety of functional and artistic glassware. Silica glass ...
EPFL2024

Searching for Strong Gravitational Lenses

Frédéric Courbin, Cameron Alexander Campbell Lemon

Strong gravitational lenses provide unique laboratories for cosmological and astrophysical investigations, but they must first be discovered - a task that can be met with significant contamination by other astrophysical objects and asterisms. Here we revie ...
Dordrecht2024

SLITRONOMY: Towards a fully wavelet-based strong lensing inversion technique

Frédéric Courbin, Aymeric Alexandre Galan, Austin Chandler Peel, Rémy Elie Joseph

Strong gravitational lensing provides a wealth of astrophysical information on the baryonic and dark matter content of galaxies. It also serves as a valuable cosmological probe by allowing us to measure the Hubble constant independently of other methods. T ...
EDP SCIENCES S A2021
Show more
Related MOOCs (4)
Selected chapters form winterschool on multi-scale brain
Understanding the brain requires an integrated understan­ding of different scales of organisation of the brain. This Massive Open Online Course (MOOC) will take the you through the latest data, models
Selected chapters form winterschool on multi-scale brain
Understanding the brain requires an integrated understan­ding of different scales of organisation of the brain. This Massive Open Online Course (MOOC) will take the you through the latest data, models
Transmission Electron Microscopy for Materials Sciences
Learn about the fundamentals of transmission electron microscopy in materials sciences: you will be able to understand papers where TEM has been used and have the necessary theoretical basis for takin
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.