Publication

Semi-supervised Learning with Semantic Knowledge Extraction for Improved Speech Recognition in Air Traffic Control

Petr Motlicek
2017
Report or working paper
Abstract

Automatic Speech Recognition (ASR) can introduce higher levels of automation into Air Traffic Control (ATC), where spoken language is still the predominant form of communication. While ATC uses standard phraseology and a limited vocabulary, we need to adapt the speech recognition systems to local acoustic conditions and vocabularies at each airport to reach optimal performance. Due to continuous operation of ATC systems, a large and increasing amount of untranscribed speech data is available, allowing for semi-supervised learning methods to build and adapt ASR models. In this paper, we first identify the challenges in building ASR systems for specific ATC areas and propose to utilize out-of-domain data to build baseline ASR models. Then we explore different methods of data selection for adapting baseline models by exploiting the continuously increasing untranscribed data. We develop a basic approach capable of exploiting semantic representations of ATC commands. We achieve relative improvement in both word error rate (23.5%) and concept error rates (7%) when adapting ASR models to different ATC conditions in a semi-supervised manner.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.